Pgs., Pts. NGUYỄN XUÂN TRUỜNG

- GIÚP CHO GIÁO VIEN, NHÅ TRUỠNG VÀ HOQC SINH PHỚ THÔNG DẠY TỚT VÀ HOC TỐT MÔN HÓA HOC
- TÀI LIÊU THAM KHẢO BỚ ÍCH CHO SINH VIÊN KHOA HÓA CÁC TRUỠNG ĐẠI HỌC VÀ CAO ĐẢ̉NG

NHÀ XUẤT BẢN KHOA HỌC VÀ KỸ THUẬT

PGS., PTS. NGUYỄN XUÂN TRƯỜNG

Lev Giúp cho giáo viên, nhà Irưòng và học sinh phổ thông dạy tốt và học tốt môn hóa học.
®®Tài liệu tham khảo bó ích cho sinh viên Khoa Ilóa các trừung dại ḥ̣c và cao đẳng

THEGIOISACHCUATOI2911@GMAIL.COM

NHÀ XUẤT BẢN KHOA HỌC VÀ KŶ THUẬT HÀ NỘI

5-54(078); 54(09) KHKT-99

ZờI NÓI ĐÀ̀ U

Nội dung cuón "Hóa học vui" gòm ba phăn:
PHẦN MộT: Thi nghiệm vui và áo thuật hơa học.
Nhì̛ng biến đới hóa học thạt vo cùng phong phú, một số xảy ra có kèm theo những hiện tự̂ng kì lạ nhu phât ra tiếng kêu hoạc tiêng nó, tự bốc cháy hay tư phát ra ánh sáng lạnh, tạo ra chất kết tùa hay làm chất két tủa tan di, làm màu sấc biến dởi khôn lương nhu có phép "thàn thơng bién hóa".

Duta vào nhüng phàn ưng hơa học dó ta có thé xây dưng nên những thi nghiênc vui và ào thuật hóa học.

Thí nghiẹm vui và ao thuật hơa học ngoài việc dào sâu và mò rộng kiển thức nó còn có tác dưng rát lơn trong viẹc gây hừng thú học tập hớa học cho học sinh. Giáo vién có thế sử dung nhǜng thi nghiềm này trong giảng dạy nội khóa và hoạt dộng ngoại khóa, dạ̣c biệt là biếu diễn trong các ngày hội uui hóa học, các ngày lé, các ngày kỉ niềm, biéu diễn xen kẽ vơi các tiét mục văn nghẹ.

PHẦN HAI: Chuyện vui và giai thoại vè̀ các nhà hóa học.
Nhüng chuyện vui giúp chúng ta giài tri một cách nhẹ nhàng, thodi mái còn giai thoại về các nhà hóa học là nhuüng câu chuyện có thưc phàn ánh những phần chát cao quý của các nhà bác học: lòng say mee vo hạn, su düng càm hi sinh quên mình, xà thân vì khoa học cùng vöi trí thông minh tuyẹt vời.

Tât cà nhữg cái dó là nhữg tám guong sáng ngòi cho chưng
ta noi theo.
PHÀN BA: Học mà vui... Vui mè học
Trong viẹc học lại có sụ giaii tri, trong viẹ́c giải trí lại có su họ dó là cách học khôn ngoan rất phù hợp với lưa tuới thanh thiếu nién.

Phăn này gồm những bài tho giúp ta dễ nhớ kiến thức; những câu dố mà cáu hơi và câu trà lò̀ dều dự̛̣ biên soạn duới hỉnh thức tho; nhì̛ng giài thich, giải dáp cho nhüng hiẹn tuọng thưc té quanh ta. Tát cà nhüng cái dó sẽ giúp chuing ta mó rộng và đào sâu kiến thức hóa học một cách nhẹ nhàng, thoải máa nhưng rất sâu sâc.

Chúng tôi hi vọng cuón "Hóa học vui" là tài liệu tham khảo bớ ích cho sinh viên Khoa Hóa các trừng dại học, cao dẩng và giáo viên hóa hoc phớ thong. Dối vói các em hoc sinh nó là tài liệu quý giúp các en vilu học tập vìla giài trí.

Cuốn sách chác chắn không trånh khöi nhü̃ng thiếu sôt và hạn ché. Tác giả nong mỏi và trân trọng nhûng ŷ kiến dóng góp của các bạn dọc gần xa. Nhîng ỳ kiển dóng góp xin dự̣c gưu vè̀ :

Nhà xuất bán Khoa học và Kỹ thuật, 70 Trần Hung Dạo, Hà Nội

Hà Nội, tháng 1 năm 1998

PGS., PTS. Nguyễn Xuân Trurìng

PHẦN MỘT

thí nghiẹ̀m vu và áo thuật hóa hoc

những thí nghệm vớl khí amoniac

1- Không có lưa.... mà lại có khói

Lấy hai đũa thủy tinh ở đằu cớ quấn một ít bông. Nhúng một đũa vào dung dịch axit nitric (hoặc axit clohiđric) đậm đặc và nhúng đũa thứ hai vào dung dịch amoniac 25%. Khới trắng sẽ xuất hiện ở hai đa̛au đũa do sự tạo thành amoni nitrat (hoạ̣c amoni clorua).

$$
\mathrm{NH}_{3}+\mathrm{HNO}_{3}=\mathrm{NH}_{4} \mathrm{NO}_{3}
$$

2- Nhóm bep tham bīng tua thuy tinh

Xếp một it than gỗ vào bếp như đé nhóm lò, xong lấy đẩu đũa thửy tinh chân vào đống than lập tức đống than bốc khói nghi ngút.

Cách làm: Bỏ than gỗ vào túi bằng vải mảu rồi treo trong bình rộng miệng bên dưới có đựng dung dịch NH_{3} đậnı đặc trong vài ngày. Khí NH_{3} sé bị hút vào than. Khi biéu diẽn thi nghiệm,
đũa thủy tinh cần được nhúng vào axit HCl đặc. Khí HCl gạ̃p NH_{3} sê tạo ra khới tráng là những hạt nhỏ $\mathrm{NH}_{4} \mathrm{Cl}$ theo phản úng:

$$
\mathrm{NH}_{3}+\mathrm{HCl}=\mathrm{NH}_{4} \mathrm{Cl}
$$

3- Lưa và khói

Dạ̣t bốn miếng bông lên bốn miếng kính. Các miếng bông đã tẩm các dung dịch sau: miếng thứ nhất tẩm cồn, miếng thứ hai - dung dịch NH_{3} đậm đạ̉c, miếng thứ ba - benzen, miếng thứ tư - dung dịch HCl (pha 1 thể tích dung dịch HCl đậm đặc với một thể tích nước). Để bốn miếng kính đó cách xa nhau khoảng $25-30 \mathrm{~cm}$ miếng kính đạ̣t bông tẩm dung dịch NH_{3} và HCl phải đạat ở hai đầu.

Sau đó giới thiệu ngọn lửa không có khơi, ngọn lửa có khói và có khới nhưng không có lửa.

Châm lửa đớt bông tẩm cồn trước, rồi đốt bông tẩm benzen, sau cùng gáp miếng bông tẩm axit HCl đạ̀t lên miếng bồng tẩm dung dịch NH_{3}.

Chú ý:

- Có thể thay cồn bà̀ng các chất khác như axeton, ete etylic.
- Nên tẩm it benzen vì benzen cháy rất nhiều khói, rất rõ và lâu.
- Dung dịch HCl nên pha tì lệ $1: 1$ như trên để không có khí HCl bay ra quá nhiều, người xem dễ nhận thấy có khơi trước.

4. Mua lừa

Rót 100 ml dung dịch amoniac vào một bình miệng rộng rồi đun nhẹ, sau đó đổ từ từ vào bình bột $\mathrm{Cr}_{2} \mathrm{O}_{3}$ đã được đun nóng trên một miếng kim loại. Những đốm lửa sáng như sao lả tả rơi
xuống giống như trận mưa lửa.
Nếu ta đổ vào dung dịch amoniac một ít rượu etylic, phản ứng sẽ xảy ra mạnh hơn.

Giải thích: Ó đây không phải $\mathrm{Cr}_{2} \mathrm{O}_{3}$ tác dụng với NH_{3} mà là quá trình oxi hóa NH_{3} bởi oxi của không khí có $\mathrm{Cr}_{2} \mathrm{O}_{3}$ làm xúc tác.

$$
4 \mathrm{NH}_{3}+3 \mathrm{O}_{2}=2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Phản ứng xảy ra trên bề mặt của các hạt $\mathrm{Cr}_{2} \mathrm{O}_{3}$ và tỏa ra rất nhiều nhiệt làm các hạt này nóng sáng lên.

5- Trưng tự chui vào bình

Bạn giơ cho khán giả xem một cái bình cầu cổ dài, đậy bằng một miếng kinh, một chén nước và một quả trứng luộc đã bớc vỏ và tuyên bố có phép lạ bắt quả trứng chui vào bình.

Nói xong, bạn mở miếng kính rồi nhanh chóng rót vào bình vài mililit nước và đặt quả trứng lên miệng bình. Lập tức quả trứng từ từ chui vào bình. Bạn dốc ngược bình lên quả trứng vẫn chui vào. Quả trứng còn to hơn cả miệng bình, nó cố sức chui vào, đến nỗi bị vuốt dài ra. Khi chui được vào bình bỗng nhiên nó biến thành màu hồng.

Cách làm: Chọn trứng to hơn miệng bình một chút, luộc chín, bóc vỏ và nhúng vào dung dịch phenolphtalein không màu. Lấy bình cầu cổ dài, hơ khô rồi nạp đầy khí NH_{3}.

Muốn có khí NH_{3} ta đun nóng dung dịch NH_{3} đạ̣c úp ngược bình cầu lên ống dẫn khí đi từ dung dịch NH_{3} đạc này, khi thấy có mùi khai là lúc NH_{3} đã đầy bình. Nhấc bình cầu lên, đậy bằng miệng kính và đật lên bàn.

Giải thích: Khi NH_{3} hòa tan rất nhiều trong nước ơ nhiệt độ thường: 1 thể tích nước có thể hòa tan tới 700 thẽ̉ tích NH_{3}

trong bình hòa tan hết, áp suất giảm xuống rất thấp. Ảp suất không khí bên ngoài bình lớn hơn sẽ đẩy quả trứng chui vào bình. Trong bình có ion $\mathrm{OH} \cdot$ (do phản ứng của NH_{3} với nước:
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$) nên phenolphtalein chuyển sang màu hồng. Muốn lấy trứng ra chi việc lựa cho trứng rơi vào cổ bình rồi hơ nớng bình cầu. Không khi trong bình nóng lên, nở ra sẽ đẩy quả trứng chui ra. Ta hứng nó vào cốc đựng dung dịch axit, quả trửng sẽ trở lại màu tráng.

Chú ý: Trong thí nghiệm trên có thể thay khí NH_{3} bằng khi

HCl vì khi này cũng tan nhiều trong nước.

6. Thu khōi và tàn cưa diéu thuóc lá

Bạn châm một điếu thuốc lá để hút và thở ra những làn khơi tráng. Chỉ trong giây lát những làn khới thuốc kia tan biến vào trong không khí. Như có phép thần, bạn "thu" những làn khới thuốc đó lại và tập trung vào trong một cải cốc.

Và cả tàn thuốc nữa, khi hút bạn gạt nó rời đi và bây giờ bạn "gọi" nó về tập trung vào một cái cốc thứ hai.

Cảch làm: Dùng hai cốc thủy tinh sạch, trong suốt có hai nắp: một cái bà̀ng thưy tinh, một cái bằng nhôm.

Bạn tráng cốc thứ nhất bà̀ng dung dịch NH_{3} đạ̣c và dùng bông tẩm dung dịch HCl đặc bôi lên nắp thủy tịnh. Khi dậy nắp vào lập tức khới tráng xuất hiện dày đặc trong cốc.

Dùng giấy ráp đánh sạch nấp bà̀ng nhôm để làm mất lớp nhôm oxit che phủ ở ngoài rồi bôi dung dịch muối thủy ngân lên. Dậy nắp nhôm vào cốc thứ hai.

Sau 5 phút nhôm sê mọc "lông tơ" trông như tàn thuốc lá.
Chú ý: Nên biểu diễn thi nghiệm thu khơi trước. Thấy khới xuất hiện, người xem tập trung sự chú ý vào cốc thu khới, trong thò̀i gian này, nhôm cơ đủ thì giờ để bắt đầu mọc "lông tơ". Hiện tượng xảy ra rất hứng thú là "lông tơ" mọc dài và khá nhanh trông giống như tàn thuốc lá đãng chui dần qua nắp nhôm vào trong cốc.

Giải thích: Trong cốc thu khơi khí NH_{3} và khí HCl tác dụng với nhau tạo thành muối $\mathrm{NH}_{4} \mathrm{Cl}$:

$$
\mathrm{NH}_{3}+\mathrm{HCl}=\mathrm{NH}_{4} \mathrm{Cl}
$$

$\mathrm{NH}_{4} \mathrm{Cl}$ được tạo ra ờ dạng những hạt rất nhỏ trông như khói
trắng.
Ơ cớc thu tàn, khi bời dung dịch muối thủy ngân lên náp nhôm có phản ứng sau:

$$
2 \mathrm{Al}+3 \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}=2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{Hg}
$$

Nhôm hoạt động hóa học mạnh hơn thủy ngân nên dẩy Hg ra khỏi dung dịch muối của nó. Hg được giải phóng tạo thành một lớp hỗn hống $\mathrm{Al}-\mathrm{Hg}$ trên bề mặt lá nhôm. Lớp này ngãn cản không cho tạo ra trên bề mặt lá nhôm màng mỏng $\mathrm{Al}_{2} \mathrm{O}_{3}$ rán chác và liên tục, vì thế nhôm không được bảo vệ như trước. Ò từng điểm nhỏ nhôm bị oxi hóa mạnh bởi oxi của không khí tạo thành $\mathrm{Al}_{2} \mathrm{O}_{3}$ và mọc lên trông như lông tơ rất giống tàn thuốc lá.

7- Tạo ra màu hồng bằng nược lã

Thêm vài mililit dung dịch amoniac đậm đạ̣c (25\%) và 2-3 giọt dung dịch phenolphtalein vào cốc dựng 50 ml rượu etylic khan. Hỗn hợp không có màu.

Khi biểu diễn, bạn nhờ một khán giả nào đó múc một cốc nước lã để pha dần vào hốn hợp trên. Khi đổ nước màu hồng xuất hiện và càng đở thêm nước thì màu hồng càng trờ nên đậm.

Giải thich: Khi dổ thêm nước, NH_{3} sẽ tác dụng với nước theo phản úng sau:

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Ion OH^{-}làm cho phenolphtalein chuyển sang màu hồng.
Càng đổ thêm nước càng xuất hiện thêm nhiều ion OH^{-}.

8. Làm đởi màu hoa giáay

Cấm ngược bó hoa giấy màu tráng vào một chiếc bình cỡ lớn,
lập tức nó sē biến thành bó hoa có màu sặc sã̃.

Cách làm: Làm một bó hoa bà̀ng giấy thấm trấng. Chia bó hoa đơ thành bốn phần. Phần thứ nhất để nguyên. Phần thứ hai tẩm dung dịch phenolphtalein. Phần thứ ba tẩm dung dịch CuSO_{4} loãng. Phần thứ tư tẩm dung dịch $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$.

Đẻ̉ khô rồi xếp xen kẽ các bông hoa đã tẩm các dung dịch khác nhau, cá bó hoa vẫn có màu tráng.

Cám ngược bó hoa vào bình lớn chứa đầy khí NH_{3}, lập tức bó hoa trấng biến thành bó hoa màu.

Những bông tẩm phenolphtalein có màu hồng; tẩm CuSO_{4} có màu xanh; tẩm $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ có màu đen và những bông không tẩm gì, tất nhiên, vẫn có màu trắng.

Để có khí NH_{3} và chỉ việc rốt vài mililit dung dịch NH_{3} dậm đặc vào bình rời đun nóng.

Giải thich: Màu hồng do ion OH^{-}tác dụng với phenolphtalein ($\mathrm{OH}^{\bullet} \sinh$ ra do NH_{3} tác dụng với hơi nước). Màu xanh do ion Cu^{2+} tạo với các phần tử NH_{3} thành ion phức $\mathrm{Cu}^{2} \mathrm{NH}_{3}{ }_{4}{ }^{2+}$ còn ion Hg^{+}của $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ bị phân hủy :

$$
2 \mathrm{Hg}^{+}=\mathrm{Hg}^{2+}+\mathrm{Hg}^{\prime}
$$

Thủy ngân kim loại được giải phóng dưới dạng bột mịn, màu đen.

9- Làm đởi màu hoa thật

Có thể làm đổi màu hoa thật bằng những hơa chất thích hợp. Sự thay đổi màu sấc của các cánh hoa trắng, xanh và hồng dưới tác dụng của các loại hơa chất khác nhau ghi ở bảng dưới đây: ' màu trong dấu ngoạ̣c là màu thay đổi theo thời gian).

Thuoüc thư	Màu hoxi tự nhièn		
	Trưng	l lồng	Xanh kr
NH_{3}	Ving turyi	Iná ma	Xanh ky (ngex bich vợi dường viền xanh thẫm)
NaOH	Xanh lá cầ (nâu có ánh đơ)	Xanh lá cây (nâu cơ ánh đờ)	Xanh loy (vàng có viền xanh lí cị̂̂)
1 Cl	Xanh lơ có ánh Xunh lá cây	-	
11 Br	Xanla lá cây (xanh inẩm)	Dio hồng	わi hồng
$\mathrm{H2SO}_{4}$	Xanh lai cây	bi son	Buxcatô
$\underline{\mathrm{INO}_{3}}$	1 a ma	Bxacdô	5i)
$\mathrm{CH}_{3} \mathrm{COOH}$	Khong dôi max	lồng nhạt	tri nhat

Nhuộm màu hoa bà̀ng các hớa chất nói chung thuận lợi và an toàn hơn nhiều so với phương pháp khác, màu hoa giữ được lâu hơn và dẹp.

Giui thich: Tại sao cánh hoa lại có thể biến đổi từ màu này sang màu khác? Thực vật chứa các sắc tố của một số nhóm chất cơ bản như: flavon, antoxianin, carotin và lục diệp tố. Flavon và antoxianin làm cho hoa, quả cây có màu đỏ, màu vàng với ánh sác xanh thẫm. Antoxianin là sấc tố quan trọng nhất của hoa tạo cho hoa có màu đỏ, màu xanh thẫm và các ánh khác nhau.

Trong các cánh hoo xanh. hồng có chứa những chất hiện màu đơn giản nhất của nhóm này - xianidin, hoạ̣c glicozit xianin- dẫn xuất của xianidin.

Dưới tác dụng của axit, cation xianin được tạo thành, có màu đỏ trong môi trường axit. Diều này giải thích vì sao hai loại hoa màu xanh và màu hồng lại có màu gần giống nhau khi cho các axit tác dụng lên chúng.

10. Vẽ tranh bằng khói thuốc lá

Hút một diều thuốc lá, từ từ thở khói vào một tờ giấy hoàn toàn tráng, những nét vẽ của một bức tranh sẽ xuẩt hiện.

Cách làm: Hòa tan AgNO_{3} trong nước. Dùng dung dịch này vẽ lên giấy một bức tranh. Dể ra ngoài ánh sáng mạ̣t trời. Nhửng nét vê trở nên tím. Pha dung dịch HgCl_{2} trong nước và tô lên những nét vẽ, khiến chúng biến mất và tờ giấy tráng lại hoàn toàn. Khi thở khói thuốc lá lên tờ giấy, những nét vẽ lại xuất hiện.

Giài thích: AgNO_{3} dưới ánh sáng mặt trời sẽ phân hủy thành Ag kim loại ở dạng bột mịn có màu den (trường hợp này vì loãng nên màu tími.

$$
2 \mathrm{AgNO}_{3}=2 \mathrm{Ag}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

Ag sẽ tác dụng với HgCl_{2} chuyển thành AgCl màu tráng:

$$
2 \mathrm{Ag}+2 \mathrm{HgCl}_{2}=\underset{\text { Trẳng }}{2 \mathrm{AgCl}}+\underset{\text { Trấng }}{\underset{\mathrm{Hg}_{2}}{\mathrm{Cl}_{2}}, ~(2)}
$$

Dưới tác dụng của khói thuoóc lá, mà thực chắt chính là khí NH_{3} trong khơi thuốc, xảy ra phản ứng tạo phức và thủy ngân kim loại bị đẩy ra. Thủy ngân kim loại có màu đen. Do đó, những nét vẽ lại hiện ra:

$$
\begin{gathered}
\mathrm{AgCl}+2 \mathrm{NH}_{3}=\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl} \\
\mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{NH}_{3}=\underset{\text { Den }}{\mathrm{Hg}}+\mathrm{NH}_{2} \mathrm{HgCl} \cdot \mathrm{HCl}
\end{gathered}
$$

Chú ý: Rửa tay sạch sau khi thí nghiệm vì $\mathbf{H g C l}_{2}$ dộc.

NHÛ̃NG THí NGHIỆM dựA trêen tính chất của muốl coban

Dựa vào tính chất của muối coban: khi khan có màu xanh; khi ngậm 6 phân tử nước có màu hồng và khi số phân tử nước thay đổi, màu sác của nó cũng thay đổi, ta có thể làm một sớ thí nghiệm vui sau đây:

11. Mực bí mật

Dùng dung dịch muối coban màu hồng làm mực để viết lên giấy poluya hồng sê không nhìn thấy nét chữ.

Ho bức thư lên bếp than nét chữ sẽ có màu xanh, vì nhiệt làm mất nước làm cho muối coban chuyển sang dạng khan.

12. Chup ảnh bà̀ng bàn là (bàn ui)

Vẽ một bức chân dung lên giấy hồng bà̀ng dung dịch muối coban.

Dùng bàn là nóng là lên tờ giấy, bức chân dung màu xanh sẽ xuất hiện.

13- Dỏ kết hợp vời trắng thành xanh

Dùng cặp kẹp một mảnh to canxi clorua khan (màu trăng); nhúng một nửa mảnh đó trong $1 / 2$ giáy vào dung dịch coban clorua đậm đạc (màu đỏ) đựng trong cốc thủy tinh. Sau đó rút ngay mảnh canxi clorua ra khỏi dung dịch. Phần bị ngập của mảnh canxi clorua trong chốc lát bị nhuộm thành xanh.

Giải thich: Canxi clorua khan có tính háo nước nên đã chiếm nước cửa muối coban clorua (đehiđđat hóa) biến nó thành khan nên có màu xanh.

14- Xanh thành đỏ, đỏ thành manh. Trong hóa trấng, trắng hóa trong

Bạn đặt trên bàn bốn cái cốc. Cốc thứ nhất dựng dung dịch quỳ ($\mathrm{cơ}$ cho mấy giọt kiêm) màu xanh. Cốc thứ hai đựng các hạt silicagen màu hồng icác hạt này thường dūng để hút ẩm trong phòng thí nghiệm và thường dược nhuộm màu của muối CoCl_{2}. Cốc thứ ba đựng dung dịch trong suốt BaCl_{2}. Cốc thứ tư đựng nước và có lẫn một it kẽm oxit ZnO mịn (chất này có màu trắng, không tan trong nước nên làm vẩn đục nước).

Bây giờ bạn rót axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ tương đối đậm đặc và trong suốt đựng trong một cốc khác, lằn lượt vào bốn cớc trên.

Cốc thứ nhất dựng rượu quỳ biến từ xanh thành dỏ.
Cốc thứ hai đựng các hạt silicagen biến từ dỏ thành xanh.
Cóc thíc ba đựng BaCl_{2} trong suốt thành tráng.
Cớc thứ tu đựng nước và ZnO từ tráng thành trong suớt.
Giải thich: Ó cốc thứ nhất, rượu quỳ gặp axit nên biến thành đỏ. Trong cốc thứ hai, $\mathrm{H}_{2} \mathrm{SO}_{4}$ đạ̣c hút nước của muối coban ngạ̀m nước $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ làm cho nó trở thành khan nên hóa màu xanh. Ò cốc thứ ba tạo ra kết tủa trắng BaSO_{4}.

$$
\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{BaSO}_{4}+2 \mathrm{HCl}
$$

Trong cốc thứ tư, ZnO tác dụng với $\mathrm{H}_{2} \mathrm{SO}_{4}$ tạo ra dung dịch ZnSO_{4} không màu.

$$
\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

15- Tư một chất pha đự̛̣ hai màu

Bạn hãy lấy một chất rấn, hòa tan vạ̀o hai cốc "nước" trong suốt giống hệt nhau, rồi khuấy đều. Hai cốc nước trong giống nhau đó sẽ bị nhuộm thành hai màu khác hẳn nhau: một cớc màu hồng và một cốc màu xanh.

Giải thich: Chất rấn đem hòa tan là tinh thể muối coban khan. Còn hai cốc, thực ra chỉ có một cốc là nước còn cốc kia là axeton.

Khi hòa tan vào nước nó có màu hồng, màu của ion coban hiđrat hóa. Còn khi hòa tan trong axeton nó có màu xanh, màu của muối khan.

16. Nóng và nguội cũng khảc mãu

Một dung dịch màu hồng, đun nơng nó chuyển sang màu tím, để nguội nó lại trở về màu hồng.

Cách làm: Hòa tan $1 g$ muối coban clorua vào $2-3 \mathrm{ml}$ nước rời cho thêm vào 1 ml glixerin sẽ được dung dịch có tính chất trên.

Glixerin là chất rất háo nước, nơ hút các phân tử nước hidrat của các ion Co^{2+} làm thay đổi màu của ion này. Khả năng hút các phân tử nước của glixerin phụ thuộc vào nhiệt độ. .

17. Chiếc khān tạy kì̀ lạ

Hòa tan hai thìa khoảng $10-15 \mathrm{~g}$ coban clorua vào một ơng nghiệm chứa nước đến $3 / 4$ ống. Thấm ướt một chiếc khăn tay trắng (bằng vài thường) với dung dịch đó rồi đem phơi khô. Chiếc khản có màu lam đẹp và có thể dùng để biểu diễn ảo thuật.

Thoạt tiên hãy đưa chiếc khân tay cho khán giả xem. Vô nhàu khăn trong lòng bàn tay và thới mạnh vào khān một lưc. Khi bạn giở khăn ra, trong tay bạn đã có một khān màu trắng. Khi sấy khô khăn lại có màu xanh lam.

Giải thích: Màu của các muối Co (II) thay đổi tù̀y theo mức độ hiđrat hóa của ion Co^{2+}. Sụ biến đởi này xảy ra rõ rệt hơn cả trong trường hợp coban clorua $\mathrm{CoCl}_{2} x_{2} \mathrm{H}_{2} \mathrm{O}$

x	6	4	2	15	1	0
Màu Hồng tho Tím hồngTím xanh xầm:						

Khi phơi khô, số phân tử nước trong tinh thể hiarat giảm đi (nhưng chưa phải là mất hết nước kết tinh), do đó $\mathrm{CoCl}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ có màu xanh lam. Hơi nước trong hơi bạn thở ra tạo thành $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ màu hồng, nhựng vì màu nhạt nên trông như trắng.

18- Bực tranh điến đổi màu sắc

Dùng dung dịch CoCl_{2} đậm đặc vẽ lên giá́y trắng sẽ được một bức tranh có màul hờng. Cãng bức tranh lên' bảng hay lên dây. Dạ̣t một ngọn điện gằn sát bức tranh ở phia dưới vừa để mọi người quan sát cho rõ nhưng ầng thời cũng dùng nhiệt của ngọn đèn điện để làm khố các nét vê. Nên để ngọn điện lệch sang một bên của bức tranh. Sau một thời gian ta sẽ dược một bức tranh có màu biến đổi theo khoảng cách đối với ngọn đèn lần lượt là: tím xanh, tím xanh thã̉m, tím hồng, hồng đỏ.

Sau đó ta lại làm đối màu ngược lại bả̉ng cách chuyển chỗ của ngọn đèn điện sang phía bên kia của bức tranh và phủ một
miếng vải ẩm lên phía đặt ngọn đèn trước kia khoảng 2-3 phưt sau ta lại có một bức tranh đổi màu ngưọc với trước.

Có thể dùng bức tranh màu này làm bức tranh thời tiết. Qua biến đổi màu của bức tranh có thể biết được độ ẩm hay khố hanh của không khí.

Giải thích: Tưy theo số phân tử nước mất nhiều hay ít mà nét vẽ có những màu sắc khác nhau.

19. Bưc tranh chỉ thời tiết

Dùng giấy crôki vẽ một bức tranh phong cảnh: Cảnh đời núi, cảnh đồng quê hoặc cảnh biển khơi... Khi vẽ, chú ý dành một khoảng không gian lớn cho bầu trời.

Pha một số dung dịch hóa chất và dùng bút lông tô lên tranh.
Mạat đất tô bà̀ng dung dịch gồm:
Đồng clorua $\quad 1 \%$
Zelatin $\quad 1 \%$
Cây cối, mặt biển, cánh đồng tô bằng dung dịch:
Coban (II) clorua $0,5 \%$
Dồng clorua $\quad 0,25 \%$
Niken hidroxit $0,4 \%$
Zelatin $\quad 1 \%$
Bầu trời tô bằng dung dị̣ch:
Coban clorua 10 phăn
Natri clorua 5 phàn
Zelatin 1 phằn
Glixerin $\quad 0,5$ phăn

Nước nóng $\quad 30$ phà̀n
Nếu trời nắng hoạc hanh khô, bức tranh có màu sác tươi tắn, da trời màu xanh lơ, cây cối mặt biển xanh lục, mặt đất màu vàng nâu. Bỗng nhiên thời tiết thay đổi: trời nồm, sáp bão, sấp mưa... phong cảnh trong bức tranh vẽ bao trùm màu xám ảm đảm.

Bức tranh dự báo thời tiết này dựa trên hiện tượng thay đôi màu sác của ion coban khi liên kết với số phân tử nước khác nhau (do độ ả̉m của không khí) có phối họ̣ với màu sắc của các muối khác.

NHŪ̃NG THÍ NGHIỆM VỚI NATRI

20- Diệu vũ natri

Dổ 30 ml nước cùng vài giọt phenolphtalein vào một cốc dung dịch 100 ml và rớt 50 ml dầu hỏa sạch lên trên mặt nước. Lấy một miếng natri cạo sạch nhỏ bằng hạt đậu đặt cẩn thận lên lớp dầu hỏa. Natri chìm xuống, nổi lên rồi lại chìm xuống, cứ như thế khoảng 10-12 lần cho đến khi miếng natri tan hết. Trong khi đó lớp nước phía dưới từ trong suốt trở thành đỏ hồng.

Giải thich: Natri nặng hơn dầu hỏa nên chìm xuống. Nhưng khi tiếp xúc với nước thì nó lập tức tác dụng với nước giải phóng H_{2}. Bọt khí H_{2} bao bọc mẩu natri và dệm khí đó đẩy nó nổi lên lớp dầu hỏa. Tại đây, các bọt khí tách ra và mẩu natri lại bị chìm xuống.

21- Natri đốt cháy khí cacbonic

Chúng ta đều biết rà̀ng khí CO_{2} không cháy được nên được dùng làm chất chữa cháy. Thế mà natri đốt cháy được khi CO_{2} đấy! Dể chứng minh điều này bạn cớ thể biểu diễn thí nghiệm sau đây:

Nạp đầy khí CO_{2} vào một bình thủy tinh, đưa que đóm dang cháy vào bình que đóm sē tất ngay.

Bây giờ bạn dùng pipet để nhỏ xuống đáy bình vài giọt nước rồi thả mẩu natri bà̀ng hạt đỗ vào giọt nước. Natri tác dụng với nước và bốc cháy trong khí quyển CO_{2} theo phản ứng:

$$
2 \mathrm{Na}+\mathrm{CO}_{2}=\mathrm{Na}_{2} \mathrm{O}+\mathrm{CO}
$$

Thi nghiệm trên cũng chứng tỏ ràng khơng thể dập tắt natri đang cháy bà̀ng khí CO_{2} mà phải dập bằng cát hoạc đất khô.

22- Bã̉s cháy tàu chiến dich

Dùng loại giấy thấm nước để gấp một cái tàu chiến. Bỏ vào trong tàu một mẩu kim loại natri hoạc kali to bằng hạt đậu rồi thả vào chậu nước đã được nhỏ thêm vài giọt phenolphtalein không màu. Sau vài phút tàu sẽ tự bốc cháy và nước trong chậu có loang màu hồng từ chỗ con tàu cháy, giống nh hu cảnh tàu chiến địch bị bán cháy, máu giạ̣c nhuốm đỏ dòng sông.

Giải thich: Nước thấm qua giấy, tác dụng với natri (hoặc kali) theo phương trình phán ứng sau:
hoạc

$$
\begin{aligned}
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} & =2 \mathrm{NaOH}+\mathrm{H}_{2} \uparrow \\
2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} & =2 \mathrm{KOH}+\mathrm{H}_{2} \uparrow
\end{aligned}
$$

Phản ứng trên tỏa nhiều nhiệt, làm cho khi H_{2} thoát ra tự bốc cháy, đồng thời NaOH (hoặ KOH) tạo thành làm cho phenolphtalein không màu chuyển sang màu hồng.

Chú ý: Trong thí nghiệm trên, mẩu natri hoạc kali nhất thiết chi được lấy to bàng hạt đậu. Nếu lấy to hơn, phân ứng xảy ra mãnh liệt, sẽ nổ, nguy hiểm.

23- Cháy trong khí cacbonic

Dùng kẹp sắt kẹp magie rồi đốt cho cháy sáng. Sau đó đưa vào trong cốc đựng khí cacbonic. Magie tiếp tục cháy sáng chói trong khí cacbonic, phản ưng tạo ra magie oxit màu tráng bám đầy vào kẹp sất và rơi xuống đáy cốc, đồng thời tạo ra những vụn cacbon màu đen ơ đáy cốc.

$$
2 \mathrm{Mg}+\mathrm{CO}_{2}=2 \mathrm{MgO}+\mathrm{C}
$$

NHỮNG THÍ NGHIỆM DỰA TRÊN Tính HÁO NUỚC CỦA $\mathrm{H}_{2} \mathrm{SO}_{4}$ ĐặC

24- Hóa than mà không cần dốt cháy

Đổ $6 g$ đường bột vào một cốc cao và hẹp, đặt lên đĩa, rót vào cốc $5 m l H_{2} \mathrm{SO}_{+}$đậm đạ̣c rồi trộn nhanh các chất này. Khối chất trong cốc bắt đầu hớa đen, phồng ra dầng cao lên, cuối cùng "bò" ra khỏi miệng cốc, đông đạ̣c lại ở dạng kỳ quái, uốn cong thành "hình dấu phày".

Giải thich: $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đậc rất háo nước. Dường, bột còn gọi là hiđrat cacbon vì công thức của chúng có thể viết dưới dạng cacbon ngậm nước. Chả̉ng hạn đường saccarozo $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ có thế viết là $\mathrm{C}_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{11}$. Axit sunfuric dậm đặc phân hủy đường, thiếm nước, giải phóng cacbon.

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4} \text { dạc }} 12 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O}+Q
$$

Phản ứng trên tỏa nhiều nhiệt, do nhiệt độ tăng một phần cacbon tác dụng với $\mathrm{H}_{2} \mathrm{SO}_{4}$ tạo thành khí SO_{2} và khí CO_{2} :

$$
\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Các khí đơ làm cacbon trở nên xốp và tãng thể tích, làm cho nó bò ra ngoài cốc.

Chú ý: Tránh để dây axit vào quần áo và không sờ tay vào "dấu phẩy".

25- Mực bī mật

Dựa trên tính háo nước của $\mathrm{H}_{2} \mathrm{SO}_{+}$để làm mực bí mật.
Lấy đũa thủy tinh chấm dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4}$ loãng để viết lên
giấy một bức thư ngán, nét chũ sẽ không có màu.
Ho bức thư lên bếp than hoặc bàn là, nước ở nét chữ sẽ bay hơi làm cho $\mathrm{H}_{2} \mathrm{SO}_{4}$ trở nên đậm đặc, nó sẽ chiếm nước của chất xenlulozo là thành phần chính của giắy và giải phóng cacbon, làm cho nét chũ hóa den.
$\mathrm{H}_{2} \mathrm{SO}_{4}$ dặc
$\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{n} \longrightarrow 6 n \mathrm{C}+5 n \mathrm{H}_{2} \mathrm{O}$
Xenluluzo

26-Châm nến khồng cần lưa

Làm một cây nến giả bàng cách láy sáp bọc xung quanh một ống nghiệm thủy tinh. Dớ rượu etylic (cồn) vào ống nghiệm rồi nút bà̀ng nút bấc có xuyên lơ ở giữa để luồn bấc, xong lại phủ sáp lên trên nưt bấc để trông như một cây nến thật.

Lấy đũa thủy tinh quét hổn hợp KMnO_{4} và $\mathrm{H}_{2} \mathrm{SO}_{4}$ đặc để châm vào bấc của cây nến, nó sẽ tự bừng cháy.

Giải thich: Khi trộn kali pemanganat với axit sunfuric đậm dặc, sẽ sinh ra axit pemanganic:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4}=\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{HMnO}_{4}
$$

Dưới tác dụng của $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đặc, $\cdot \mathrm{HMnO}_{4}$ mất nước tạo thành anhiđ̛rit manganic $\mathrm{Mn}_{2} \mathrm{O}_{7}$. Chất này là một chất lỏng màu nâu, sánh như dầu, dễ bị phân hủy ở nhiệt độ thường, có tiếng nổ, tạo thành MnO_{2} và O_{2} (chứa tì lệ ozon đáng kể). Vì vậy anhiđ̛rit pemanganic là một chất oxi hớa cực kì mạnh. Rượu, ete và nhiều chất hữu cơ khác bốc cháy khi tiếp xúc với anhiđrit pemanganic

Chú ý: Để cho đơn giản ta có thể biểu hiện thí nghiệm châm đèn cồn không cần lửa đẻ khỏi phải làm cây nến giả như trên. Sau mới lần châm đũa thủy tinh vào bấc đèn cồn cần lau sạch
đầu đũa rồi mới nhúng đầu đũa vào hồn hợp KMnO_{4} và $\mathrm{H}_{2} \mathrm{SO}_{4}$ đạc.

27. Những chiếc cóc "thần"

Bạn bày một loạt những chiếc cốc không lên bàn và tuyên bố đó là những chiếc cốc có phép thần. Bạn lần lượt ném những mẩu bông vào các cốc trên, các mẩu bông sẽ tự bốc cháy.

Cách làm và giải thích: Ó đáy mỗi cốc bạn bôi một it hốn hợp sền sệt của KMnO_{4} và $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đặc. Với lượng nhỏ hốn hợp này ở đáy cốc người xem sẽ không nhìn thấy. Bạn viên những mảu bông đem tẩm cồn rồi ném vào các cốc trên. Khi bông tiếp xúc với hỗn hợp nó sẽ tự bốc cháy.

28. Ng̣n lửa hiện

Dụng cụ để làm thí nghiệm gồm có: một ống nghiệm, một. cốc thành mỏng dung tích $100-150 \mathrm{ml}$ và một bộ phận đốt (gồm 1 nút cao su có cá́m ống dẫn khi, bao bọc bằng một ống chụp). Lắp dụng cụ như hình vē.

Khi dặt ống chụp lên nút, miệng trên của nơ phải cao hơn ống dẫn khi $0,5 \mathrm{~cm}$.

Người biểu diễn giơ cho khán giả ba lọ đựng chất lỏng, không màu có đánh số $1,2,3$. Rót vào ống nghiệm giữ trên giá sắt độ $2-3 \mathrm{ml}$ chất lỏng từ lọ 1 (đietyl ete) và nhúng ống nghiệm này vào cốc, sao cho đáy ống nghiệm cách đáy cốc 2 cm . Rớt vào cốc $40-50 \mathrm{ml}$ chất lỏng từ lọ 2 (nước).

Nhúng miệng trên của ống chụp ngập $0,5 \mathrm{~cm}$ trong $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đặc, dựng trong bát sứ, rời nhúng tiêp vào bát sứ khác đựng KMnO_{4} nghiền mịn, sao cho có một lớp bột bám vào đầu ớng.

Đặt ống chụp lên nút cao su cô ống dẫn khi. Rơt nhanh vào cốc nước độ $10-15 \mathrm{ml}$ chất lỏng từ lọ $3\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ đậm đặc). Lập tức một ngọn lửa dài tới 20 cm cháy bùng lên ơ đầu ống dẫn khí.

1. Ống chup
2. Ống dẫn khí
3. Nút cao su
4. Óng nghiệm

Giải thich: Khi rớt $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đặc vào cốc nước, nước sẽ nóng lên rất nhanh. Dietyl ete sẽ sôi (nhiệt độ sôi là $34,6^{\circ} \mathrm{C}$), hơi của nó gạ̣p anhiđrit pemanganic $\mathrm{Mn}_{2} \mathrm{O}_{7}$ ở miếng ống chụp sẽ bốc cháy ngay. Thí nghiệm này rất an toàn. Ngọn lửa sẽ tắt khi dietyl ete bay hooi hết.

29- Thở ra lưa

Sử dụng tính chất của hỗn họ̣p KMnO_{4} vỡi $\mathrm{H}_{2} \mathrm{SO}_{4}$ đạ̣c như ở thí nghiệm trên, ta có thể biểu diễn thí nghiệm thở ra lửa.

Lấy một ống thủy tinh có thành dày, đường kinh khoảng 1 cm và dài 30 cm . Dùng ngọn lửa có nhiệt độ cao để uốn cho ống hơi
cong. Dạ̣t một cái nút có khoan lỡ vào trong ống gần chỗ uốn. Trước khi biểu diễn cho vào chén sứ nhỏ $1 / 5$ thìa nhỏ $\mathrm{KMnO}_{\mathcal{4}}$ rồi nhỏ một ít $\mathrm{H}_{2} \mathrm{SO}_{4}$ đặc vào đó. Nhúng đều ống thủy tinh gằn chỗ uốn vào khối nhão tạo thành trong chén, và xoay ống một chút sao cho ở đầu ống hỉnh thành một vành tròn chất nhão trên. (Chú ý đừng cúi sát chén sứ? Khi rút ống ra khỏi chén, nhúng ngay toàn bộ chén vào một cốc nước).

Giư đầu ống có tẩm chất nhão hướng lên trên và đặt một miếng bông tẩm ete (hoạac xảng loại nhẹ) vào trong ống gần sảt cái nút. Dẩy miếng bơng bằng đủa thủy tinh. (Chú ý đậy ngay lọ đựng ete hoặc xāng và để ra xa).

Cầm ống hơi chếch lên và đưa đầu ống sạch vào mồm thổi thật mạnh. Một lưỡi lửa lớn dài tới $0,5 m$ lập tức bay ra khòi ống. Có thể thổi hai, ba lần và mổi lần như thế lại xuất hiện ngọn lửa. Sau khi làm thí nghiệm cần nhúng ngay ống vào trong nước, rửa sạch và sấy khô.

Nếu vì một lí do nào đơ khi thổi lần thứ nhất không thấy hơi ete bốc cháy, chớ nhúng ống vào chén chứa chất nhão một lần nữa vì có thể bùng cháy. Lúc này cần rửa sạch ống, sấy khô và lặp lại toàn bộ thí nghiệm.

30. Cac loại mutc bí mât

Có thể dùng những chất hóa học khác nhau không màu hay có màu trấng để viết lên giấy trấng. Sau đó láy một loại hóa chất khác làm hiện màu các nét chữ hay nét vẽ lên. Sau đây là một số loại mực bí mật và cách làm chữ xuất hiện.

1) Dùng nước cơm hay nước cháo loãng (hay bất kì một loại bột nào đem nấu thành hồ tinh bột loãng) viết lên giấy trắng sẽ được những nét chữ có màu trắng như màu của giấy. Muốn phát hiện nét chữ ta dùng dung dịch cồn iot hay dung dịch iot tan trong nước thắm vào một tờ giấy thấm, giấy lọc hay mảnh vải rồi ấp lên tờ giấy có những chữ viết bằng mực bí mật.

Xoa nhẹ tay lên tờ giấy thấm rồi mở tờ giấy thấm ra sẽ thấy những nét chữ màu xanh xuất hiện. Vì iot làm cho hồ tinh bột biến thành màu xanh.
2) Dùng dung dịch NaOH (hay KOH) loãng dể viết lên giấy trắng rồi dùng giấy thấm tẩm dung dịch phenolphtalein ấp lên, nét chữ màu hồng sẽ xuất hiện.

Cung có thể dùng dung dịch phenolphtalein làm mực viết rồi dùng dung dịch NaOH hoăc nước vôi trong để làm xuất hiện chữ.
3) Dùng xà phòng rấn viết lên giấy, khi muốn làm xuất hiện chữ thì nhúng giấy vào nước, những nét chữ trong mờ sẽ hiện ra.
4) Dùng dung dịch KSCN viết lên giấy trấng. Khi muốn có nét chữ xuất hiện ta dùng giấy thấm tẩm dung dịch muối sất (III) ấp lên. Chữ sẽ xuất hiện có màu đỏ thắm do tạo ra chất $\mathrm{Fe}(\mathrm{SCN})_{3}$.
5) Dùng dung dịch $\mathrm{Na}_{2} \mathrm{~S}$ (hay $\mathrm{K}_{2} \mathrm{~S}$) để viết lên giấy. Áp giấy thấm tẩm dung dịch $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ lên chữ màu đen xuất hiện. Áp giầy thấm tẩm dung dịch CdSO_{4} lên chữ màu vàng xuất hiện. Vì tạo ra kết tủa PbS màu đen CdS màu vàng.

31. "Tuabin khi"

Lấy bìa cắt thành một hình tròn, dán vào đó những nón giấy (làm bằng những mảnh giấy hình vuông). Dùng một cái kim xuyên qua tấm hình tròn làm trục và đặt trục đó ở vị trí nằm ngang trên giá đỡ bằng gỗ buộc bảng dây kim loại (xem hình vẽ).

Rỏt khí CO_{2} vào các nón. Do CO_{2} nặng hơn không khí nên dòng khi CO_{2} đi xuống thổi vào các nón làm cho "tuabin" quay.

Cũng có thể thổi các nón bàng H_{2}. Do H_{2} nhẹ hơn không khí nên cần đạ̣t bình đựng H_{2} dưới các nón có miệng quay xuống dưới, H_{2} bốc lên phía trên, thổi vào các nón làm "tuabin" quay.

32- Dài phun nươc

Bạn cớ thể làm một cái đài phun nước nhỏ bé, xinh xấn trong sa bàn mô hình một công viên chả̉ng hạn.

Muốn vậy, bạn lấy 2-3g axit oxalic $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ trộn với 2-3 gNaHCO_{3} và đổ hốn hợp vào ống nghiệm thể tích khoảng 60 ml . Sau đớ đổ nước vào và nút chặt ống nghiệm bà̀ng nút cao su có ớng dẩn khí xuyên qua. Ống này cần cám tới đáy ống nghiệm. Nước trong ống sẽ phun ra rất mạnh như một đài phun nước trong công viên vậy.

Giải thich: Giữa dung dịch axit $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ và muối NaHCO_{3} co phản ưng:

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaHCO}_{3}=\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}
$$

Khi CO_{2} sinh ra nén rất mạnh lên dung dịch trong ống nghiệm và đẩy nó phun mạh ra ngoài.

Thí nghiệm này cũng có thể minh họa cho nguyên tác hoạt động của bình cứu hỏa.

33- Dót cháy bà̀ng khí cacbonic

Thật là chuyện lạ đời! Chúng ta ai cûng biết khi CO_{2} không duy trì sự cháy, nên được dùng làm chất chữa cháy.

Bạn lấy cạap gắp một miếng bông giơ lên cho mọi người xem rồi cho luồng khí CO_{2} điều chế từ bình kíp thổi vào miếng bông, miếng bông sẽ bùng cháy trước con mắt ngac nhiên của mọi người.

Cách làm và giãi thich: Như̆ng miếng bông làm thí nghiệm cần được chuẩn bị trước bằng cách rắc bột natri peoxit $\mathrm{Na}_{2} \mathrm{O}_{2}$ khô lên. Khi thổi khí CO_{2} vào, $\mathrm{Na}_{2} \mathrm{O}_{2}$ sẽ tác dụng với CO_{2} theo phương trinh phản ứng.

$$
2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{CO}_{2}=2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2}
$$

Phản ứng trên vừa tỏa nhiệt, vừa giải phóng ra O_{2}, nên miếng bông bùng cháy tức khắc.

Chú \mathfrak{y} : Những miếng bông đã tẩm bột $\mathrm{Na}_{2} \mathrm{O}_{2}$ dùng không hết được để dành lại trong phòng thí nghiệm, vì có thể tự bốc cháy do tác dụng của khí CO_{2} trong không khí. Tốt hơn hết là nên đốt ngay đi.

34- Trúng tụ quay

Thả hai quả trứng vào chậu nước. Một quả quay tit còn quá kia nhảy lên, chìm xuống nhấp nhô trông rất vui mát.

Cách làm: Châm thủng hai lỡ ở đầu quả trứng và hút hết lòng trứng ra. Trộn axit oxalic $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ với muối NaHCO_{3} theo ti lệ 1: 2 về khới lượng. Cho hỗn hợp trên vào trong quả trứng đến khoảng $1 / 3$ thể tích quả trứng (nếu cho nhiều quá quả trứng sē chìm). Lấy sáp hoạc parafinn gán kín hai đầu quả trứng lại.

Châm thủng một lỗ nhỏ bên sườn quả trứng ở phà̀n chìm dưới nước và thả vào chậu nước, nó sẽ quay tít. Còn quả kia châm một lỗ nhỏ ở đầu chìm dưới nước nó sẽ nhảy nhấp nhô.

Giải thích: Nước qua lỗ thủng chảy vào trong quả trứng, hòa tan axit $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ và muối NaHCO_{3}. Trong dung dịch hai chất này xảy ra phản ứng sinh khí sau đây:

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaHCO}_{3}=\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}^{\uparrow}
$$

Khí CO_{2} thoát mạnh qua lỗ thủng gây ra những lực đẩy làm cho quả trửng quay tròn hoạ́c nháy nhấp nhô.

35- Khí ẩn hiện

Bạn gio cho mọi ngươi xem một ơng nghiệm dựng khi màu nâu. Dưới sự chỉ huy của bạn, khí màu nâu bỗng nhiên biến mất. Sau đó bạn hô một tiếng, khí màu nâu lại xuất hiện, rồi lại biến đi và hiện ra theo ý muốn của bạn, như có phép lạ vậy!

Cách làm: Lấy một ống nghiệm to, có thành dày và nút cao su để chế tạo thành một pittông (nút cao su) chuyển động trong xilanh (ống nghiệm). Pittông phải thật khít.

Trước tiên bạn cho vào đáy ống nghiệm vài tinh thể $\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}$ rồi đun nóng để tạo ra khí NO_{2} màu nâu.

$$
2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}=2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2} \uparrow
$$

Khi khí NO_{2} đã chiếm khoảng $1 / 3$ thể tích ống nghiệm thì láp pittông vào và đé̉ nguội.

Nếu ấn mạnh vào pittông để nén khí thị màu của nó sē nhạt dần và trở thành không màu. Khi kéo pittông lên, áp suất khí
giàm và màu nâu lại xuất hiện. Có thể làm đí, làm lại nhiều lần.
Giải thich: Ò điều kiện thường, giữa khí NO_{2} màu nâu và khí $\mathrm{N}_{2} \mathrm{O}_{4}$ không màu tồn tại một cân bằng.

$$
2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}
$$

Khi nén khí, áp suất tāng, thể tích giảm nên cân bà̀ng chuyển dịch về phía tạo thành $\mathrm{N}_{2} \mathrm{O}_{4}$ không màu. Ngược lại khi kéo pittông ra, áp suất giản cân bầng chuyển dịch về phia tạo thành NO_{2} màu nâu.

Chú ý: Pittông phại thật kín. Không cho khí rò ra ngoài khi nén thì thí nghiệm mới thành công.

36- Chất phāt sãng và tự bớc chãy

Cho vào ống nghiệm một lượng photpho đỏ bàng hạt ngô. Dùng ống nghiệm thứ hai nhỏ hơn đậy lên ống nghiệm này đồng thời

kẹp vào giữa một băng giấy. Lá́p các ống nghiệm đó vào giá thi nghiệm (xem hình vẽ) rồi đun nóng bằng đèn cồn.
P đỏ bay hơi và ngưng tư lại ở đáy ống nghiệm nhỏ thành P tráng. Trong bớng tới, đáy ống nghiệm nhỏ sẽ phát sáng và khi bạn rút bãng giấy ra, nó sẽ tự bốc cháy trong không khí.

Chúu $\mathfrak{y}: \mathbf{P}$ tráng dộc nên rủa tay thật sạch sau thí nghiệm.

37. Cháy ờ dưởi nược

Cho nước vào khoảng một nửa thể tích ống nghiệm. Nhúng ống nghiệm vào cốc nước nóng khoảng $80^{\circ} \mathrm{C}$ và cho vào trong ống nghiệm này một mẩu photpho tráng to bàng hạt ngô. Khi photpho trắng đã nơng chảy ($44^{\circ} \mathrm{C}$) thì dẫn một luồng khí oxi vào ống nghiệm cho tiếp xuic với photpho tráng nớng chảy. Photpho cháy mạnh, phát sáng trong ồng nghiệm chửa nước.

38- Phép màu cưa nhà thờ Jerusalem

Người ta kể lại rà̀ng trong khi làm Lễ Phự sinh ở nhà thờ Jerusalem thì một hiện tượng màu nhiệm đã xảy ra: một linh mục vừa mới cầu kình "Cầu Chúa hãy tái sinh!" thì những cây nến trên đài mà ông ta cầm trong tay bỗng nhiên bùng cháy.

Phép màu ấy có thể thực hiện một cách đơn giản như saư: Cho vào ống nghiệm khoảng $0,3 g$ photpho đỏ, nút kín ống nghiẹm bằng bông và đặt nằm ngang trên giá thí nghiệm. Dùng đèn cồn đun ống nghiệm để cho P đỏ bay houi và ngưng tụ lại ờ thành ống nghiệm thành P trấng. Để nguội rồi rốt vào ống nghiệm $4-5 \mathrm{ml}$ benzen, nút chặt rồi lác cho P trắng tan hết trong benzen. Rót dung dịch này ra chén và dùng cặp nhưng miếng bông vào chén, lấy ra để khỗ rồi lại nhúng vào chén, độ 3-5 lần. Kẹp miếng bông
này vào bấc cáy nến rồi rấc lên trên một lớp mỏng P đỏ. Sau vài phút, cây nến sẽ tự bốc cháy.

Giải thich: P trấng là chất rấn không tan trong nước nhưng lại dễ tan trong các dung môi hữu cơ như sunfua cacbon, benzen... khi benzen bay hơ hết, trên miĉing bông còn lại những tinh thể P trấng, chúng bị oxi hơa mạnh trong không khí và tự bốc cháy. Còn P đỏ cūng là chất dễ cháy, rác lên để làm mồi.

Chú ý: P trấng rất độc và dễ cháy. Không nên lấy nhiều hơa chất. Rửa tay sạch sau thí nghiệm.

39- Dàng chũ tụ phát sáng

Ngâm một miếng photpho trắng khoảng $1 g$ vào $2 m l$ benzen hay cacbon sunfua CS_{2} cho tan hết. Nếu khó tan thì thêm benzen. Cô thể gói miếng photpho vào giấy cứng (bìa vở), lấy búa đập khẽ cho vỡ vụn ra rồi cho vào benzen ngâm cho mau tan. Giấy còn
dính photpho phải ngâm vào dung dịch $\mathrm{CuSO}_{4} 5 \%$.
Lấy $2 \mathrm{ZnSO}_{+}$pha vào 10 ml nước cho tan hết. Sau đó lấy dung dịch $\mathrm{Na}_{2} \mathrm{~S}$ hay $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ rót vào dung dịch ZnSO_{4} ta sẽ thu được kết tủa tráng.

$$
\mathrm{ZnSO}_{4}+\mathrm{Na}_{2} \mathrm{~S}=\mathrm{ZnS} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

Lọc lấy kết tủa trắng ZnS và rửa nhiều lần bà̀ng nước. Sấy khô ZnS rồi nghiền thật nhỏ mịn. Trộn bột ZnS với dung dịch photpho trong benzen. Dùng bút lông kẻ chữ lên tám kinh. Sau tấm kính dán giấy trấng. Buổi tối, có thể quan sát được dòng chũ phát sáng màu xanh nhạt.

Giải thich: Khi benzen bay hơi hết, photpho còn lại sẽ bị oxi hóa chậm trong không khí và phát ra một nāng lượng dưới ánh sáng. Đó là sự phát quang hơa học. ZnS cũng có hiện tượng phát quang khi nó được chiếu sáng.

Chú $\begin{gathered}\text { : }\end{gathered}$

- Nếu hòa tan nhiều photpho trắng trong benzen thì khi trộn với ZnS để viết chũ sẽ phát sáng mạnh hơn.
- Muốn cho chữ phát sáng dễ quan sát nén kẻ chữ có nét to.
- Nếu có keo dính hòa tan vào benzen (chỉ cằn một lượng nhỏ keo) thì khi sơn chữ lên kính, bột ZnS sẽ không bị rơi.
- Cũng có thể tráng lớp sơn đó vào một bình cầu rồi để cho benzen bay hơi hết ta sẽ được một bình cầu phát sáng.
- Nếu không có ZnS thì chỉ cần viết chũ bảng dung dịch photpho tráng trong benzen cũng vẫn phát sáng tớt.

40- Dốt cháy bã̀ng nược

Thường ai cũng biết rà̀ng nước làm tắt lửa, còn dùng nước
để đốt cháy các chất thì dĩ nhiên không thể được.
Thế mà ta có thể đốt cháy các chất bằng nước đấy! Các chất bị nước đốt cháy cơ thể là chất rấn, chất lỏng hoạc chất khi.

1) Trên một miếng gố, bạn đặt một mẩu chất rấn to bẳng hạt đậu. Bạn giơ cốc nước lã bình thường cho mọi người xem và uống vài ngụm cho mọi người tin là nước thật. Sau dó bạn nhỏ vài giọt nước trong cốc vào mẩu chất rấn. Chất rắn sẽ bùng çháy.
2) Trên mảnh sát tây, bạn đổ một chất bột. Nhỏ vài giọt nước vào nó sẽ bùng cháy thành ngọn lửa có màu tím xen lẫn màu vàng, hình nấm như vụ nỗ bom nguyên tử.
3) Trên mảnh sất tây khác, bạn đổ một chất bột thành đống hình nón. Nhỏ $2-3$ giọt nước vào chất này, sau vài giây nó sẽ cháy bùng lên và tạo thành một đám mây màu nâu hình đuôi con cáo.
4) Bạn đưa cho mọi người xem một chất lỏng đựng trong một chên sứ nông và rộng miệng rồi rót thêm nước trong cốc vào chén sứ. Chất lỏng trong chén cũng bùng cháy.
5) Bây giờ bạn lại dưa ra một lọ thủy tinh nút kin, trong chứa một chất khí màu vàng lục. Thận trọng mở nút rồi rớt vài mililit nước vào lọ. Chất khí trong lọ cãng bùng cháy, có khơi đen dày đạac.

Cách làm và giải thích:

1) Chất rán đem dùng là kim loại natri (hoặc kali). Khi gặp nước nố sẽ tác dụng mạh với nước và giải phóng H_{2}. Phản ứng tỏa nhiệt làm H_{2} thoát ra tự bốc cháy và natri cũng cháy theo.
hoạc

$$
\begin{aligned}
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} & =2 \mathrm{NaOH}+\mathrm{H}_{2} \uparrow \\
2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} & =2 \mathrm{KOH}+\mathrm{H}_{2} \uparrow
\end{aligned}
$$

Nếu là Na , ngọn lửa sẽ có màu vàng, còn K cho ngọn lủa màu tím trông khá đẹp mắt.

Chú ý: Mẩu Na (hoặc K) chi được lấy to bằng hạt đậu.
2) Chất bột là hỗn hợp bột iot nghiền nhỏ và bột nhôm mịn. Nước làm xúc tác cho phản ứng sau đây:

$$
2 \mathrm{Al}+3 \mathrm{I}_{2}=2 \mathrm{AlI}_{3}
$$

Hốn hợp bốc cháy thành ngọn lửa có màu tím của iot xen lẫn màu vàng của AlI_{3}. Có thể thay bột Al bà̀ng bột Zn .
3) Chất bột ở dây là hốn họ̣ bột kẽm và AgNO_{3}.

Trộn vài gam bột kẽm với tinh thể AgNO_{3} tinh khiết trong chén sứ. \ddagger ở hổn hợp lên miếng sất tây thành đống hình nón và đánh một chỗ trũng ở đỉnh. Nhỏ 2-3 giọt nước vào chỗ trũng đó.

Khi có nước một phần AgNO_{3} hòa tan thành dung dịch. Kẽm là kim loại hoạt động hơn bạc nên đẩy bạc ra khỏi muối AgNO_{3} tan trong nước - Phản ứng này tỏa nhiệt:

$$
\mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{AgNO}_{3}+\mathrm{Zn}=\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}+Q
$$

Nhiệt của phản ứng này làm cho các muối AgNO_{3} và $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ bị phân tích, giai phơng khị NO_{2} màu nâu làm thành đám mây hình đuôi cáo.

$$
\begin{gathered}
2 \mathrm{AgNO}_{3}=2 \mathrm{Ag}+2 \mathrm{NO}_{2}+\mathrm{O}_{2} \\
\\
2 \mathrm{tn}\left(\mathrm{NO}_{3}\right)_{2}=2 \mathrm{ZnO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}
\end{gathered}
$$

Chú $\mathfrak{y}:$ Khí NO_{2} độc nên cần làm thí nghiệm trong tủ hút hoặc chỗ thoáng gió.
4) Chất lỏng là dầu hỏa, trước khi thí nghiệm bạn đã bí mật bỏ vào chén đựng dầu hỏa một mẩu kim loại natri to bàng hạt đậu. Natri nặng hơn dầu hỏa nên chìm dưới đáy chén (người ta thường bảo quản natri hoạ̉c kali trong phòng thí nghiệm bàng cách ngâm chúng trong dầu hỏa).

Khi rớt thêm nước vào, nước nặng hơn dầu hỏa nên chìm xuống dưới và tác dụng với natri. Phản ứng tỏa nhiệt làm cho H_{2} thoát ra bốc cháy và dầu hỏa cháy theo.

Chư ý: Mẩu natri chỉ được lấy to bằng hạt đậu và dùng chén sứ nhơ, nông, rộng miệng để chỉ chứa rất ít dầu hỏa.
5) Chất khí là chất clo và bạn bí mật bỏ trước vào bình đựng khí này vài mẩu canxi cacbua CaC_{2} bằng hạt ngô. Khi rớt nước vào CaC_{2} tác dụng với nước giải phớng ra $\mathrm{C}_{2} \mathrm{H}_{2}$.

$$
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}\left(\mathrm{OH}_{2}\right.
$$

Khí $\mathrm{C}_{2} \mathrm{H}_{2}$ gạ̣p Cl_{2} sẽ tự bốc cháy theo phán ứng sau:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Cl}_{2}=2 \mathrm{C}+2 \mathrm{HCl}
$$

Khói đen là muội than được giải phóng.

41. Dōt nữ̛ đā chāy

Bạn lấy một nắm nước đá bỏ vào một óng bo thấp và rộng miệng rồi bật diềm đốt trên mặt ống bơ. Thật kỳ lạ! Nước đã bốc cháy.

Cách làm và giải thích: Trong ống bơ, bạn đã đạ̣t sãn vài mẩu canxi cacbua CaC_{2}. Khi bỏ nước đá vào CaC_{2} sẽ có tác dụng với nước giải phóng khí $\mathrm{C}_{2} \mathrm{H}_{2}$:

$$
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}
$$

Khí $\mathrm{C}_{2} \mathrm{H}_{2}$ thoát lên mặt nước đá, khi đốt nó sẽ cháy trông giống hệt nước đá cháy vậy.

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2}=4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

42- À thnệt biến cổi màu sắc

Láy một dung dịch trong suốt, không màu lần lượt rớt vào bốn ống nghiệm đựng các dung dịch, màu sắc của chưng biến đổi như sau:

Ống 1: Tư màu đỏ hồng chuyển thành không màu.
Ống 2: Từ trong suốt không màu chuyển thành màu tráng như sũa.

Ống 3: Từ màu trắng đục như nước vôi sữa chuyển thành trong suốt, không màu.

Óng 4: Từ màu xanh lam thẫm chuyển thành xanh lơ nhạt.
Cách làm và giải thích: Dung dịch trong suốt, không màu dùng để đổ vào bốn ống nghiệm trên là $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đặc.

Ống 1: Đựng dung dịch kiềm loãng có vài giọt phenolphtalein nên có màu đò hồng đã bị axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ trung hòa hết kiềm nên dung dịch trở thành không màu.

Ống 2: Đựng dung dịch BaCl_{2} trong suốt, không màu khi tác dụng với $\mathrm{H}_{2} \mathrm{SO}_{4}$ tạo ra kết tủa tráng BaSO_{4} nên dung dịch chuyển thành tráng như vôi sữa.

Ông 3: Đựng bột ZnO lẫn với nước có màu trắng đục như vôi sữa khi tác dụng với $\mathrm{H}_{2} \mathrm{SO}_{4}$ sẽ tạo ra muối ZnSO_{4} không màu, tan tốt trong nước.

$$
\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Ống 4: Đựng dung dịch phức chất đồng $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{++}$có màu xanh lam thẫm khi tảc dụng với $\mathrm{H}_{2} \mathrm{SO}_{4}$ nó chuyển thành muối $\mathrm{CuSO}_{,}$có màu xanh lo nhạt.

43 - Thuóc pha màt vạt năng

Để lên giá gỗ bốn ống nghiệm, mỗi ớng đựng khoảng 5 ml dung dịch các chất sau: CuSO_{4} loãng, phenolphtalein loãng, rự̛̣u
râm bụt (rượu đã ngâm hoa râm bụt) có pha axit rất loãng và thuốc thử Nessler.

Lấy một cốc nhỏ đựng dung dịch NH_{3}, rồi đưa cho mọi người quar sát màu sác dung dịch. Rớt dung dịch NH_{3} lần lượt theo thứ tự vào các dung dịch trên.

Ông 1: Màu xanh lo nhạt của dung dịch CuSO_{+}sẽ biến thành màu xanh lam đậm rất đẹp, vì đã tạo ra phức chất đồng $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{++}$.

Óng 3: Dung dịch rượu râm bụt có axit loãng màu hồng nhạt sẽ biến thành màu xanh lá cây. Dung dịch rượu râm bụt có thể dùng thay cho dung dịch quỳ tím.

Ống 4: Dung dịch Nessler không màu sẽ trở thành màu đỏ nâu thẫm. Phản ưng của thuốc thử Nessler viết dưới dạng công thức sau:

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}+2\left(\mathrm{HgI}_{4}\right)^{--}+4 \mathrm{OH}^{-}=7 \mathrm{I}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
& +\left[\mathrm{O}_{\text {Kết tưa dỏ nâu }}^{\mathrm{O}_{\mathrm{Hg}}^{\mathrm{Hg}} \mathrm{NH}_{2}}\right]_{\mathrm{I} \downarrow}^{\mathrm{Hg}}
\end{aligned}
$$

Cuối cùng, nếu cho dung dịch HCl vào bốn dung dịch trên thì các màu lại trở lại như ban đầu.

44 - Nóng, lạnh làm thay dởi màu cua dung dịch

Có thể điều chế được các dung dịch mà màu sấc thay đổi khi đun nóng hoạac để nguội.

Rót nước cất vào khoảng nửa ống nghiệm rồi hòa tan vào đó vài tinh thể natri tetraborat $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 20 \mathrm{H}_{2} \mathrm{O}$ cho thêm vài giọt phenolphtalein. Do sự thủy phân của muối nên dung dịch có môi
trường kiềm và phenolphtalein chuyển sang màu hồng.
Sau đó rớt vào ống nghiệm khác $2 m l$ nước cất, nhỏ thêm vào đó 1 giọt glixerin rồi đổ dần dần vào dung dịch muối borat trên cho đến khi dung dịch vừa mất màu hồng.

Bây giờ đun nóng dung dịch borat (đun cách thủy) màu hồng xuất hiện. Dể nguội màu hồng lại biến mất. Có thể làm đi làm lại nhiều lần thí nghiệm này.

Giài thich: Muối borat thủy phân tạo thành axit boric. Sự tương tác của axit boric với glixerin ó nhiệt độ thường theo phản ưng sau:

Phản ứng tạo ra este có môi trường axit nên dung dịch không có màu. Khi đun nóng nó bị phân giải nên dung dịch lại có màu hồng.

45- Nhưng chất thay đởi màu theo nhiệt độ

1) Bạn đưa cho khán già xem một chất có màu vàng chanh ơ $38^{\circ} \mathrm{C}$, đỏ nhạt ở $52^{\circ} \mathrm{C}$, đỏ tươi ở $60^{\circ} \mathrm{C}$ và nâu ở $70^{\circ} \mathrm{C}$.

Cách diều ché: Nhỏ từng giọt dung dịch KI đậm đạac vào dung dịch muối thủy ngân. Lúc đầu tạo ra kết tủa đỏ HgI_{2} :

$$
2 \mathrm{KI}+\mathrm{Hg}^{++}=2 \mathrm{~K}^{+}+\mathrm{HgI}_{2}
$$

Cho thêm KI đến khi hòa tan hết kết tủa:

$$
2 \mathrm{KI}+\mathrm{HgI}_{2}=\mathrm{K}_{2} \mathrm{HgI}_{4}
$$

Dung dịch $\mathrm{K}_{2} \mathrm{HgI}_{+}$này được gọi là thuốc thử Nessler rất nhạy với ion amoni trong môi trường kiềm (sinh ra kết tủa nâu).

Cho dần từng giọt thuốc thử Nessler vào dung dịch AgNO_{3} sẽ có kết tủa:

$$
2 \mathrm{AgNO}_{3}+\mathrm{K}_{2} \mathrm{HgI}_{4}=2 \mathrm{KNO}_{3}+\mathrm{Ag}_{2} \mathrm{HgI}_{4}
$$

Lọc, nghiền khi còn ướt, rồi sấy khô kết tủa ta sẽ được chất bột trên.
2) Trộn 10 ml thuốc thử Nessler với 50 ml dung dịch CuSO_{4} 10%. Thêm vào hỗn hợp 50 ml dung dịch $\mathrm{Na}_{2} \mathrm{SO}_{3} 5 \%$ sẽ sinh ra kết tủa:

$$
\begin{aligned}
2 \mathrm{CuSO}_{4}+\mathrm{K}_{2} \mathrm{HgI}_{4}+ & \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}= \\
& =\mathrm{Cu}_{2} \mathrm{HgI}_{4}+2 \mathrm{KHSO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

Lọc, nghiền và sấy khô. Bột này đỏ nhạt ở $55^{\circ} \mathrm{C}$, đỏ máu ơ $57^{\circ} \mathrm{C}$, đỏ gạch ở $63^{\circ} \mathrm{C}$, nâu nhạt ở $68^{\circ} \mathrm{C}$, màu sôcôla ở $71^{\circ} \mathrm{C}$, màu nâu đen ở $88^{\circ} \mathrm{C}$ và đen ở $100^{\circ} \mathrm{C}$. Trên $300^{\circ} \mathrm{C}$ màu của bột se đen mãi và không thay đởi đự̛̣ khi hạ nhiệt độ.

46. Bắt dung dịch hiện màu düng thời gian quy dịnh

Dật trước khán giả ba cốc thủy tinh đựng các dung dịch trong suốt không màu. Bạn tuyền bố có phép lạ bắt gạ̣p các dung dịch không màu ơ các cốc só 1 . số 2 , số 3 biến thành màu xanh sau 10 phút, 20 phùt, 30 phút.

Cách làm: Chuẩn bị các dung dịch sau đây:
Dung dịch thứ nhấf: Hòa $0,3 g \mathrm{KIO}_{3}$ vào 100 ml nước cất.
Dung dịch thú hai: Hòa $0,39 \mathrm{~g} \mathrm{Na} \mathbf{2}_{2} \mathrm{SO}_{3}$ khan, $0,3 \mathrm{ml}$ axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ đặc và 4 ml dung dịch hồ tinh bột nồng độ 1% vào 100 ml nước cất.

Lấy ba cốc thủy tinh. đảnh số $1,2,3$ và rót vào mối cốc 10 ml dung dịch thứ nhất. Cho thêm lần lượt vào cốc số $1,2,3$ này
những lượng nước cất tương ửng là $30 \mathrm{ml}, 40 \mathrm{ml}, 50 \mathrm{ml}$.
Rớt đồng thời vào cả ba cốc trên, mỗi cốc 10 ml dung dịch thứ hai. Khuấy đều bà̀ng đũa thủy tinh. Màu xanh sẽ xuất hiện ở cốc 1-sau 10 phût, cốc 2 - sau 20 phût và cốc 3 - sau 30 phút.

Giải thich: Các muối KIO_{3} và $\mathrm{Na}_{2} \mathrm{SO}_{3}$ trong môi trường axit sẽ tác dụng với nhau theo phương trình phản ứng:
$2 \mathrm{KIO}_{3}+5 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{K}_{2} \mathrm{SO}_{4}+5 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
Iot được giải phơng sẽ làm cho hồ tinh bột chuyển sang màu xanh. Thực chắt phản ứng xảy ra theo hai giai đoạn sau:

$$
\begin{align*}
& \mathrm{KIO}_{3}+3 \mathrm{Na}_{2} \mathrm{SO}_{3}=\mathrm{KI}+3 \mathrm{Na}_{2} \mathrm{SO}_{4} \tag{1}\\
& \mathrm{KIO}_{3}+5 \mathrm{KI}+3 \mathrm{H}_{2} \mathrm{SO}_{4}=3 \mathrm{I}_{2}+3 \mathrm{~K}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \tag{2}
\end{align*}
$$

Phản ứng (1) xảy ra chậm chạp, còn phản ứng (2) xảy ra chớp nhoáng, vì thế màu xanh xuất hiện đột ngột. Trong thí nghiệm này ta đã âp dụng ánh hưởng của nồng độ các chất tác dụng lên tốc độ của phản ứng.

47- Bắt kết tủa xuất hiện dúng thời gian quy ainh

Muốn biểu diễn thí nghiệm bắt kết tủa xuất hiện đúng thời gian quy định ta sử dụng phản ứng:

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{S} \downarrow+\mathrm{SO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

S kết tủa làm cho dung dịch có màu đục tráng.
Pha dung dịch $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ và $\mathrm{H}_{2} \mathrm{SO}_{4}$ đều có nồng độ $0,5 \mathrm{M}$. Dùng ba ống nghiệm, trộn các chất như sau:

Ống 1: 10 ml dung dịch $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+20 \mathrm{~m} l \mathrm{H}_{2} \mathrm{O}+30 \mathrm{ml}$ dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4}$

Ống 2: 20 ml dung dịch $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}+30 \mathrm{ml}$ dung
dich $\mathrm{H}_{2} \mathrm{SO}_{4}$
Ống 3: 30 ml dung dịch $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+30 \mathrm{ml}$ dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4}$
Ống 3 dung dịch $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ có nồng đọ lớn nhất, nên kết tủa xuất hiện sớm nhất, rồi đến ống 2 và muộn nhất là ống 3 .

Trước khi biểu diễn cần làm thử trước và dùng đồng hờ để xác định thời gian xuất hiện kết tủa ở mối ống. Như vậy lúc biểu diễn thật ta có thế tuyên bố chính xác thời gian xuất hiện kết tủa ở mổi ống làm cho khán giả ngac nhiên và thán phục.

48- "Nhiệt kế hóa học"

Ó những noi không thể lắp được nhiệt kế thông thường hoặc cần theo dõi nhiệt độ từ xa, nhanh chơng bằng màu sấc có thể tự làm nhiệt kế hớa học như sau:

1) Hòa $\tan 2,5 \mathrm{~g} \mathrm{KI}$ vào 20 ml nước cát. Sau khi tan hoàn toàn thêm vào dung dịch $8 \mathrm{gHgI}_{2}$. Gọi là dung dịch 1 .

Trong một ớng nghiệm khác hòa tan $3 g \mathrm{CuSO}_{\downarrow}$ trong 20 ml nước cất, gọi là dung dịch 2 .

Thêm dần dung dịch 2 vào dung dịch 1 từng phần nhỏ, khuấy đều. Một kết tủa màu đỏ láng xuống. Đó là một họ̣p chất tương đới phức tạp chứa đồng, iot và thủy ngân.

Để yên 30 phút, gạt bỏ chất lỏng trong suốt phía trên, rửa thật sạch (khoảng 10 lần’ bà̀ng nước cất. Đẻ̛ khô và nghiền thành bột.

Trộn bợt đỏ vừa thu được với dầu sơn không màu. Như vậy ta đã có một loại nhiệt ké hóa học có thể thay đổi màu theo nhiệt độ. Dùng chổi sơn quét lên bề mặt vật cần đo nhiệt độ. Nếu nhiệt độ tăng từ $60^{\circ} \mathrm{C}$ trở lên, sơn có màu nâu và dưới $60^{\circ} \mathrm{C}$, lại trở thành đỏ.

Nhiệt kẽ́ hóa học báo hiệu nhiệt độ vượt quả $45^{\circ} \mathrm{C}$. Cách làm nhu sau:

Dung dich 1: Hòa 5g KI trong 200 ml nước cất. Đun nơng, thêm $8 \mathrm{~g} \mathrm{HgI}_{2}$, khuấy cho đến khi tan hoàn toàn.

Dung dịch 2: Hòa $2,5 \mathrm{~g} \mathrm{AgNO}_{3}$ trong 10 ml nước cất.
Dổ dung dịch 2 vào dung dịch 1. Dể yên 20 phút, gạn phần dung dịch trong, rửa và sấy khô bột kết tủa. Lấy bột này trộn với dầu sơn và thu được "nhiệt kế hóa học" màu chuyển tư vàng chanh sang màu nâu khi nhiệt dộ lên quá $45^{\circ} \mathrm{C}$ và trở lại màu ban đầu khi nhiệt độ dưới $45^{\circ} \mathrm{C}$.

Cơ thể dựa vào tốc độ phản ứng và sự thay đổi màu của các dung dịch để làm "chiếc đờng hồ hơa học" xác định các khoảng thời gian nhất định, tính bằng giây, nhu sau:

Hóa chât: $4 g$ axit xitric; 2 viên đá lửa (cung cấp ion Cs làm xúc tác cho phản ứng); 12 ml dung dịch axit $\mathrm{H}_{2} \mathrm{SO}_{+}(1: 2) ; 1,7 \mathrm{~g}$ kali bromat.

Cách làm: Chuẩn bị riêng biệt hai dung dịch.
Dung dịch 1: hòa tan 2 viên đá lửa trong axit $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Dung dịch 2: hòa axit xitric trong 10 ml nước nóng và khi đā tan hết, thêm kali hromat. Dun hai dung dịch cho tới khi tan hoàn toàn. Đớ nhanh hai dung dịch đó vào nhau và khuấy dều bằng đũa thủy tinh.

Đầu tiên, dung dịch có màu vàng, sau đó chuyển sang màu nâu sẫm, rồi lại màu vàng. Hai màu đó sẽ thay đổi luân phiên nhau và khoảng thời gian chuyển màu luôn luôn bà̉ng 20 giây $\left(45^{\circ} \mathrm{C}\right.$, sự thay đới màu diễn ra liên tục trong $\left.2 p h u ̛ t\right)$. Sau đớ dung dịch trở nên đục, những bọt khí CO_{2} bắt đầu tách ra và khoảng thời gian chuyển màu luân phiên như trên sẽ chậm hơn: cứ 30 giây mới đổi màu một lần. Sau it phút nữa khoảng thời gian đới màu tăng lên tới 35 giây.

49. Tinh thể màu nhiệm

Bạn hãy đưa cho khán giả xem một bình hình cầu đựng một chất lỏng trong suốt, trông không khác gì nước, và một tinh thể trấng nhỏ bầng hạt gạo. Sau đó bạn thả tinh thể đó vào bình. Khán già sẽ thấy tinh thể đó lớn nhanh như thổi thành một khối tráng đạ̣c sệt, còn chất lỏng trong bình thì bị khối trấng đó huit gàn hết. Bạn có thể dổc ngược bình để chứng tỏ điều đó.

Giải thich: Chất lỏng trong suốt là dung dịch quá bão hòa của muối $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. Tinh thể tráng là tinh thể của muối đó.

Dung dịch quá bão hòa của một chất khi không tiếp xúc với tinh thé̉ của chất đơ thường không giải phóng lượng chất tan. Dó là vì những tinh thể đủ lớn không thể xuất hiện ngay, bỏ qua giai đoạn những tinh thể cực nhỏ, và bản thân những tinh thể cực nhỏ này cũng không thể xuất hiện, vì đới với chủng dung dịch chưa bão hòa. Nhưng chỉ cần ném một tinh thể đủ lớn của chất tan vào dung dịch bão hòa thì quá trình kết tinh bắt đầu ngay lập tức xung quanh trung tâm kết tinh đó.

Trong thí nghiệm trên khi thả tinh thể muối vào bình nó sẽ trở thành trung tâm kết tinh, nên lớn lên rất nhanh. Nước dùng để tạo thành tinh thể ngậm nước $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (khối tráng đặc sệt) nên nó bị hút hết.

50. Làm "nưóc" dóng băng cháp nhoáng

Chúng ta đều biết, muốn có nước đá phải có máy lạnh hay tủ lạnh và tủ lạnh tốt đến mấy cunng không thể làm cho nước đóng băng ngay tức khắc được. Thế mà bạn cớ thể "phù phép" cho nước đơng bāng ngay đức khác, không cần đến tủ lạnh.

Bạn đặt trước mọi người một chậu "nước" rồi dùng hai bàn
tay "bắt quyết" trên mặt chậu, miệng lẩm nhẩm đọc "thần chú". Chậu "nước" lập tức đơng bãng rả̉n chắc đến nới có thể lật úp chậu, trước con mắt ngạ nhiên của mọi người.

Cách làm và giải thích: Trước khi biểu diễn, bạn đun sôi nóng nước lên khoảng $60^{\circ} \mathrm{C}$ rồi hòa tan vào đó muối $\mathrm{Na}_{2} \mathrm{SO}_{4}$ đến bão hòa. Đậy chậu bà̀ng miếng thủy tinh rồi để nguội đến nhiệt độ thường, bạn sẽ có được dung dịch $\mathrm{Na}_{2} \mathrm{SO}_{4}$ quá bão hòa. Dung dịch này không kết tinh trở lại vì không có trung tâm kêt tinh.

Bằng cách "bắt quyết" trên mặt chậu, bạn bí mật rá́c vào đó vài tinh thể $\mathrm{Na}_{2} \mathrm{SO}_{4}$ để làm trung tâm kết tinh. Dung dịch sẽ kết tinh tức thời trông như nước trong chậu đóng băng vậy, vì các phần tử muối đã lấy nước từ dung dịch để tạo thành các phân tử muối ngậm nước $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Cũng cơ thể thay muối $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ bà̀ng muốj
$\mathrm{CH}_{3} \mathrm{COONa}$. $3 \mathrm{H}_{2} \mathrm{O}$ hoạc $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

51. Thiên thạch trong ống nghiệm

Rớt dung dịch sát (II) sunfat vào dung dịch axit oxalic sẽ thu được kết tủa sất oxalat. Dem lọc và sấy khô kết tủa rồi nung trong ống nghiệm đậy kín, không cho không khí lọt vào sẽ xuất hiện những hạt sắt nóng đỏ bay trong ống nghiệm trông như cảnh "sao băng".

Giải thich: Các phản ứng xảy như sau:

$$
\begin{gathered}
\left.\mathrm{FeSO}_{4}+(\mathrm{COOH})_{2}=\mathrm{FerCOO}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{Fe}(\mathrm{COO})_{2}=\mathrm{Fe}+2 \mathrm{CO}_{2} \uparrow
\end{gathered}
$$

Phản ứng thứ hai giải phơng CO_{2} thổi những hạt sất nóng đỏ bay lên như sao băng.

52- Dūng đường làm thuбc súng

Nghiền đường thành bột trộn với muối KClO_{3} theo tỉ lệ bàng nhau về khó́i lự̛ng.

Đở hốn hợp thu được lên một miếng sát tây rồi vun lại thành một đớng nhở hình nơn, ở đỉnh đánh lôm xuống. Dùng óng nhỏ giọt lấy $\mathrm{H}_{2} \mathrm{SO}_{+}$đậm đặc và nhỏ vài giọt vào đỉnh lōm của hình nơn. Hỗn hợp lập tức bùng lên và gần như cháy một cách chớp nhoáng tạo thành những luồng khới dày đặc, tỏa rộng lên phía trên, hệt như đốt thuốc súng vậy.

Giải thich: KClO_{3} tác dụng với $\mathrm{H}_{2} \mathrm{SO}_{4}$ tạo ra axit HClO_{3} :

$$
2 \mathrm{KClO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{HClO}_{3}
$$

Axit HClO_{3} bị phân tích thành nước, oxi và clodioxit ClO_{2}, chăt này lại bị phân tích rất mạnh giải phóng O_{2} và làm cho đường bốc cháy. Vì phản ứng khởi đầu phảt triển rất nhanh, nên cūng như thuớc súng, đường bị cháy hằu như tức thời.

53- Nhuộm một lần thành cờ đỏ sao vàng

Dưng một miếng vải tráng nhơ, hình chữ nhật vẽ ngôi sao bàng bút chì mờ rồi khéo léo tẩm chỗ vải trong ngôi sao bằng dung dịch crom sunfat $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ trong môi truờng kiềm. Phần còn lại tẩm bằng dung dịch nhôm sunfat $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ bāo hòa. Phơi khô, miếng vải sé hoàn toàn trấng.

Trước lúc biểu diển thí nghiệm, cần treo miếng vải trên nồi nước sồ để làm ẩm. Dùng bơm nước hoa đê phun dung dịch alizarin lên miếng vải. Ngôi sao sẽ có màu vàng còn nên cờ sẽ có màu đỏ tươi.

54- Dèn không ngọn

Lấy một sợi dây đồng (có thể dùng dây điện loại nhó, cạo sạch lớp sơn cách diệni uốn thành một lò xo hỉnh ruột gà, dài khoảng 3 cm rồi cám lên đèn côn, sao cho bấc của đèn nằm gọn trong lòng lò xo.

Châm lửa cho đèn cháy. Khi dây đồng đả nơng đỏ bạn tất ngọn lửa và nhanh chóng úp lên đèn một chuông thủy tinh coó thể dùng chai thủng đáy hoạac bóng đèn chai). Bạn điều chình luồng không khí đi vào trong chuông để cung cấp vừa dủ lượng oxi cho phản ứng bằng cách hé mở nhiều hay it miệng chuông thủy tinh.

Nếu không khí vào nhiều quá hoạc ít quá, đèn đều có thể bị tắt. Khi không khi vào vừa đủ, dây đồng sẽ dỏ rực liên tục đến khi trong dèn hé́t cồn mới thôi.

Nếu đạ̣t ở cửa sổ đầu giường, bạn sẽ có một chiếc đèn ngủ thú vị.

Giải thich: Trong thí nghiệm trên xảy ra phản ứng oxi hớa rượu etylic thành anđehit etylic bởi oxi của không khi với đồng làm xúc tác.

Phương trình phản úng xảy ra như sau:

$$
2 \mathrm{Cu}+\mathrm{O}_{2}=2 \mathrm{CuO}
$$

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{CuO}=\mathrm{CH}_{3}-\mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}$
Phản ứng oxi hớa rự̛̣u là phàn ứng tỏa nhiệt.
Nhiệt lượng đó làm cho dây đồng luôn đỏ rực.

55- Cháy ở dưởi nước

Chác các bạn không thẻ̉ tin rà̀ng, một chất lại có thể cháy được ở dưới nước. Thế mà có đấy!

Cho bột magie vào thìa sất, đốt cho cháy rồi nhúng nhanh vào một cái bình to đựng nước cho ngập sâu từ $10-20 \mathrm{~cm}$ dưới mặt nước. Magie sẽ cháy sáng chói ở dưới nước và giải phóng ra khí H_{2} tạo thành những bọt khí lớn thoát lên rất mạnh. Nếu thí nghiệm này được làm trong buồng tối, chúng ta còn quan sát thấy những lưỡi lửa trên mật nước, trông rất đẹp mắt.

Giài thich: Trong không khí, bột magie cháy êm à với ngọn lửa màu vàng nhạt. Khi nhúng vào nước bột magie dang cháy sẽ không bị tát: ngược lại nó càng cháy mãnh liệt hơn, vì giữa bột magie đã được đun nóng và nước xảy ra phản ứng.

$$
\mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \uparrow
$$

H_{2} giải phóng ra sẽ bốc cháy trong không khí và làm cho magie cháy trong nước mạnh hơn. Những lưỡi lửa mà ta quan sát thấy trong phòng tối chính là lưỡi lửa hiđro.

56- Dớt chȧy dường

Bình thường, đường đớt không cháy mà chỉ bị nóng chảy. Ảy thế mà ta có "phép lạ" làm cho đường cūng cháy được. "Phép lạ" này thật đơn giản. Bạn chỉ việc rác tàn thuốc lá vào miếng đường rồi bật diêm đốt, miếng đường sẽ bắt lưa và cháy với ngọn lửa màu xanh.

Tác dụng của tàn thuốc lá đối với sự cháy của đường có thể giải thich như sau: trong tro tàn thuốc lá có chứa nhiều hợp chất hóa học, trong đó có hợp chất của liti có tác dụng như chất xúc tác khoui mào sự cháy của dường.

57- Sư cháy trong lòng chā́t lỏng

Lấy vào ống nghiệm sạch $3 m l$ cồn, rồi rớt nhẹ theo thành ống nghiệm 3 ml axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đạc. Hỗn hợp chia thành hai lớp: lớp dưới là axit $\mathrm{H}_{2} \mathrm{SO}_{\downarrow}$, lớp trên là dung dịch cồn. Rác từ từ, it một, những thuốc tím $\mathrm{KMnO}_{\downarrow}$ vào hốn họ̣p. Khoảng nửa phút sau các tia lửa lóe sáng trong lòng chất lỏng như sao sa và có những tiếng nổ lách tách khá lâu.

Khi phản ứng ngừng, ta lại rác thêm các hạt thuốc tím vào tiếp và phản ứng lại tiếp tục.

Giải thich: Khi các hạt thuốc tím rơi vào dung dịch cồn, tới lớp có axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ sẽ có phản ứng oxi được giải phóng. Phản ứng tỏa nhiệt mạnh và nhờ có oxi làm cồn cháy. Sự cháy xảy ra ở quanh từng hạt thuốc tím nên trông như sao sa.

Chú \mathfrak{y} : Không nèn rắc các hạt thuốc tím vào dung dịch cồn quá nhiều ngay một lúc, vì phản ứng quá mạnh, sôi lễ và làm đục hốn hợp nên các tia sáng lóe ra không trông rô, hơn nửa phản ứng lại mau kết thúc, người xem không qua sát được nhiều.

Có thể biểu diễn thí nghiệm này trong ống đong loại 100 ml hay cóc thủy tinh loạ nhỏ 50 ml .

58- Làm cho nữc "sâi" bà̀ng một ṣ̣i dây kim loại

Rót "nước" vào một phần ba ống nghiệm, rồi nhúng vào dó một sợi dây kim loại màu tráng. Lập tức "nước" sē sôi sùng sục rồi hơi nước bay mù mịt, mờ cả thành ống nghiệm. Nhác sợi dây kim loại ra, nước trong ớng ngừng sôi, nhưng sợi dây vào nó lại sôi sùng sục.

Cách làm và giải thich: Dùng dung dịch axit HCl làm nước
và cần đun nóng trước khi biểu diễn. Sọi dây kim loại màu trắng là dây nhôm. Khi nhúng nhôm vào dung dịch HCl nóng, phản ứng xảy ra mãnh liệt. Bọt khí H_{2} thoát ra rất mạnh trông như nước đơng sôi sùng sục. Mặt khác, phản ứng cũng làm cho nhiệt dộ của dung dịch tăng lên dần và nước bay hơi mù mịt càng làm cho hiện tượng xảy ra giống hệt như nước dang sôi.

59- Chãt "chế ngụ" phản ựng

Bạn tuyên bố vừa điễu chế ra được chất "chế ngự" phản ứng. Với chất này, ta có thẻ̉ làm cho một phản ứng dang xảy ra mãnh liệt phải ngừng ngay lại.

Bỏ vài mẩu kim loại vào một cốc thủy tinh nhỏ, rồi rót vào khoảng $1 / 4$ cốc dung dịch axit HCl loāng (1:3). Phản ứng sẽ xảy ra mạnh với những bọt khi H_{2} sùng sục bốc lên. Bạn rớt thêm vào cốc chất "chế ngự" phản ứng, phản ứng lập tức dừng ngay lại.

Cách làm: Chất chế ngự là dung dịch NaOH dậm đặc, khi đổ thêm vào sẽ trung hòa axit nên phán ứng ngừng lại ngay.

60- Dơng chũ từ đâu xuất hiện?

Có thể làm dòng chū từ đâu xuất hiện bằng cách sau đây:

1) Lấy dung dịch muới sát (II) có màu vàng viết lên một tờ giấy vàng dòng chữ gì đơ. Khi nét chũ khô đi sẽ không nhìn thấy gì nữa.

Dùng nước chè đạ̉c bôi lên mặt giấy, dòng chũ màu xanh đậm tự nhiên xuất hiện rất vơ nét.

Giải thích: Muối sất (II) trên mặt chữ tác dụng với tananh trong nước chè thành mọ̃t chất có màu xanh đậm.
2) Dùng hốn hợp các dung dịch KI và hồ tinh bột không màu làm mực và dùng bút tre viết lên một tờ giấy một dòng chữ. Dể khô dòng chữ đó không có màu nên tờ giấy vẫn trắng tinh.

Bây giờ bạn thởi khí clo vào mặt tờ giấy: trên tờ giấy sẽ xuất hiện một dòng chữ màu xanh.

Khí clo điều chế bằng cách cho KMnO_{\ddagger} tác dụng với axit HCl đạc và thu vào bình có bơm cao su giống như bình bơm nước hoa. Như vậy bạn có thể thổi clo lên mặt tờ giấy dễ dàng.

Giải thich: Clo hoạt động hóa học mạnh hơn iot nên đẩy iot ra khỏi KI.

$$
\mathrm{Cl}_{2}+2 \mathrm{KI}=2 \mathrm{KCl}+\mathrm{I}_{2}
$$

Iot dược giải phơng gạ̣p tinh bột sẽ làm cho tinh bột có màu xanh.
3) Viết bà̀ng dung dịch KCNS để khô rồi phun dung dịch muối chứa ion Fe^{3+} lên, bạn sẽ có dòng chữ màu dó (cũng dùng bình bơm nước hoa đê phun).
4) Viết đậm nét bà̀ng dung dịch kiềm để khô rồi phun dung dịch phenolphtalein lên, bạn sẽ có dòng chữ màu hồng...

... Va dòng chự biến di dâu?

Nhỏ vài giọt dung dịch cồn iot vào dung dịch tinh bột đậm đạ̉c. Khi đó ta sẽ được một chất có màu xanh đậm. Lấy chất đó làm mực, viết dòng chữ gì đó lên vải hoặc giấy. Dể một lúc cho khô. Sau khi đưa cho mọi người xem bạn hãy bí mật búng nhẹ vào tờ giấy hay vải. Tinh bột được iot nhuộm màu sẽ bong ra và dòng chữ sẽ biến đi như có phép lạ vậy.

61. Nhữg chát kêt tia kì la

1) Rớt thêm dung dịch NaOH vào ống nghiệm đựng dung dịch muối CoCl_{2}, bạn sẽ được kết tủa màu xanh da trời. Đun nóng ké́t
tủa, nó chuyển sang màu hồng. Dể nguội nó lại biến thành màu nâu.

Giải thich: Kết tủa xanh da trời là muối $\mathrm{Co}(\mathrm{OH}) \mathrm{Cl}$ tạo ra theo phản ứng sau:

$$
\mathrm{CoCl}_{2}+\mathrm{NaOH}=\mathrm{Co}(\mathrm{OH}) \mathrm{Cl}+\mathrm{NaCl}
$$

Khi đun nóng, kết tủa đổi sang màu hồng do chuyển thành $\mathrm{Co}(\mathrm{OH})_{2}$.

$$
\mathrm{Co}(\mathrm{OH}) \mathrm{Cl}+\mathrm{NaOH}=\mathrm{Co}(\mathrm{OH})_{2}+\mathrm{NaCl}
$$

Sau vài phút kết tủa lại biến thành màu nâu do $\mathrm{Co}(\mathrm{OH})_{2}$ bị oxi hơa bởi oxi của không khí tạo thành $\mathrm{Co}(\mathrm{OH})_{3}$:

$$
4 \mathrm{Co}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{Co}(\mathrm{OH})_{3}
$$

2) Rớt thêm dung dịch NaOH vào ống nghiệm dựng dung dịch CuSO_{4}, bạn sẽ thu được kết tủa xanh lá cây. Dun nơng kết tủa chuyển sang màu den.

Bạn rót thêm dung dịch NaOH vào ống nghiệm thứ hai cũng đựng dung dịch CuSO_{4} bạn lại dược kết tủa xanh lá cây. Nhưng lạ thay, khi đư nóng kết tủa vẫn giữ màu xanh lá cây chứ không chuyển sang màu den.

Cách làm và giải thich:
Ò ống nghiện thứ nháí, bạn cần rốt thêm một lượng dư dung dịch NaOH và có các phản ứng xảy ra sau đây:

$$
\mathrm{CuSO}_{4}+2 \mathrm{NaOH}=\underset{\text { Xanh lá cây }}{\mathrm{Cu}(\mathrm{OH})_{2} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}}
$$

$$
\mathrm{Cu}(\mathrm{OH})_{2} \stackrel{\mathrm{t}^{\mathrm{o}}}{=} \underset{\text { Den }}{\mathrm{CuO}}+\mathrm{H}_{2} \mathrm{O}
$$

Ó ơng nghiệm thứ hai, bạn chỉ rớt thêm một lượng nhỏ dung dịch NaOH và có phản ứng sau đây:

$$
\begin{aligned}
2 \mathrm{CuSO}_{4}+2 \mathrm{NaOH}= & \mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{SO}_{4}+ \\
& \text { Xanh lá cấy }
\end{aligned}
$$

Với lượng nhỏ dung dịch NaOH phản ứng không tạo ra $\mathrm{Cu}(\mathrm{OH})_{2}$ mà tạo muối bazơ $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{SO}_{4}$ không bị phân tích khi đun nóng.

62- Ngọn lưa xanh lục

Cho vào chén sứ khoảng $1 g$ axit boric, 10 ml cồn và $1 \mathrm{nll} \mathrm{H}_{2} \mathrm{SO}_{4}$ đạ̉c. Dùng đũa thủy tinh khuấy đều hỗn hợp rồi đốt, ta sẽ có ngọn lửa màu xanh rất đẹp.

Giải thích: Axit boric tác dụng với rượu etylic tạo thành este và $\mathrm{H}_{2} \mathrm{O}$ theo phán ựng sau:

$$
\mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BO}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

Hói của etyl borat cháy cho ngọn lửa màu xanh lá cây rất. đẹp. $\mathrm{H}_{2} \mathrm{SO}_{4}$ đạ̣c dùng để hút nước sinh ra trong phản ứng trên.

Người ta thường dùng phương pháp này để phát hiện nguyên tớ Bo lẫn trong các chất khác.

63- Thuốc "1ọc máu"

Trong quá trình hô hấp, máu đen đi vào phối thải ra khi CO_{2} và nhận khí oxi để biến thành máu đỏ đi nuôi cơ thể. Chỉ có phổi mới đảm nhận được chức năng quan trọng này. Ấy thế mà bạn tuyên bố có thể biến máu đen thành máu đỏ bà̀ng thứ thuốc "lọc máu" vừa mới bào chế được và biểu diễn cho mọi người xem.

Cách làm: Đổ mực đỏ vào hai cốc thủy tinh (khoảng $1 / 3$ cốc). Cho thêm khoảng 1 ml cồn iot và vài giọt nưởc cơm hay nước cháo vào một trong hai cốc trên để làm "máu đen". Cho thuốc "lọc máu" chính là muối $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ vào cốc "máu đen" rồi lấc lìn. Màu đỏ thẫm ở cổc này sẽ chuyển sang màu đỏ tưoi như cốc kia.

Giải thích: Iot làm cho tinh bột biến thành màu xanh (tinh bột là thuốc thử của iot) và màu đỏ của mực đỏ lẫn với màu xanh của hồ tinh bột thành ra màu đỏ thẫm (máu den).

Khi cho muối $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ vào sẽ xảy ra phản ứng:

$$
2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
$$

Iot ở trang thái tự do bị khử thành ion I^{-}nên hờ tinh bột lại trở về không màu và mực đỏ lại đỏ tươi.

64- Viết không cà̀n mực

Lẫy một miếng giấy thiếc hay nhôm (thường dùng để bọc thuốc lá, kẹo...) một chiếc pin; dây điện; giấy trắng; 50 ml dung dịch muối ăn bão hòa và 10 ml dung dịch kali feroxianua $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{\mathbf{N}}\right] 10 \%$.

Trải phẩng miếng giấy thiếc lên bàn, găm bốn cốc bà̀ng bốn đinh mũ và nới cực âm của pin với một trong bớn đinh này, rồi nối cực dương với một ngòi bút sá́t mới. Như vậy đinh mũ là catot, ngòi bút là anot. Pha trong chén dung dịch muối ăn bão hòa và dung dịch kali feroxianua, sau đơ phết lên mặt tờ giấy để viết. Áp tờ giấy lên trên giấy thiếc (miếng giấy phải nhỏ hơn một chút). Bây giờ lấy bút viết hoạ̃c vẽ lên giấy, nét vẽ màu xanh xuất hiện và tồn tại sau khi khô.

Giải thich: Khi điện phân, sát ờ ngòi bút (anot) hòa tan vào dung dịch và bị oxi hóa thành Fe^{3+} tác dụng với ion feroxianua thành sát (III) feroxianua có màu xanh.

$$
\begin{gathered}
\mathrm{Fe}^{\prime \prime}-3 e=\mathrm{Fe}^{3+} \\
4 \mathrm{Fe}^{3+}+3\left[\mathrm{Fe}(\mathrm{CN})_{n_{3}}\right]^{4-}=\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{\downarrow}\right]_{3} \downarrow+6 \mathrm{CN}^{-}
\end{gathered}
$$

Muốn viết nét đỏ lện giấy thì thay muối kali feroxianua bàng kali sunfoxianua. Khi ấy sắt (III) sunfoxianua màu đỏ sẽ được tạo thành bởi phản ứng:

$$
\mathrm{Fe}^{3+}+3\left(\mathrm{SCN}^{-}=\mathrm{Fe}\left(\mathrm{SCN}_{3} \downarrow\right.\right.
$$

Cũng có thể thay giấy bằng vải trắng để được nét xanh hay đỏ trên vải.

65- Dung dịch muôn màu

Rót vào ống nghiệm 3 ml dung dịch KMnO_{\ddagger} bão hòa và 1 ml l dung dịch $\mathrm{KOH} 10 \%$. Thêm $10-15$ giọt dung dịch $\mathrm{Na}_{2} \mathrm{SO}_{3}$ loãng. Lác ống nghiệm cho tới khi xuất hiện màu lục sẫm. Khi khuấy mạnh, dung dịch màu lục sẫm nhanh chóng trở thành xanh, tím và cuối cùng đỏ thầm.

Giải thich: Màu lục sẫm xuất hiện là do phản ứng tạo thành kali manganat nhu sau:
$2 \mathrm{KMnO}_{4}+2 \mathrm{KOH}+\mathrm{Na}_{2} \mathrm{SO}_{3}=2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Sự biến đổi của màu lục sẫm thành xanh tím và đỏ sẫm là do kali manganat bị phân hủy do tác dụng của oxi trong không khí.

Khi tiến hành thí nghiệm, cần lưu ý rằng nếu có dư $\mathrm{Na}_{2} \mathrm{SO}_{3}$ hoạa thiếu KOH thì sẽ không tạo ra $\mathrm{K}_{2} \mathrm{MnO}_{4}$.

66- Dung dịch liên tuc dỗi màu

Dùng năm cốc lớn:
Cốc thí́ nhất: pha dung dịch $\mathrm{FeCl}_{3} \mathbf{0 , 5 N}$
Cóc thú hai: chứa 1 ml dung dịch $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{0}\right] 0,5 \mathrm{~N}$ và 1 ml dung dịch $\mathrm{HCl} 1 N$.

Cóc thứ ba: chứa $3 m l$ dung dịch $\mathrm{NaOH} 1 N$.
Cốc thư tu: chứa $3-5 m l$ dung dịch phenolphtalein trong rựu.
Cốc thứ năm: $3 m l$ dung dịch HCl

Ta coó thể làm màu sác trong các cốc đó thay đổi liên tục như sau:

Rót cốc thú nhất vào cốc thứ hai xuất hiện màu xanh lam do có phàn ứng:

$$
\begin{array}{r}
4 \mathrm{FeCl}_{3}+3 \mathrm{~K}_{+}\left[\mathrm{Fe}(\mathrm{CN})_{0}\right]=12 \mathrm{KCl}+\mathrm{Fe}_{+} \\
\text {Xanh Berlin }
\end{array}\left[\mathrm{Fe}(\mathrm{CN})_{3}\right]_{3}
$$

Rót cốc thư hai vào cốc thú ba thì màu xanh biến thành màu nâu nhạt. Đó là màu của dung dịch keo $\mathrm{Fe}(\mathrm{OH})_{3}$.
$\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}+12 \mathrm{NaOH}=4 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
Rót cốc thứ ba vào cốc thứ tư thì màu nâu nhạt biến thành màu đỏ thắm, do tác dụng của ion OH^{\cdot} lên phenolphtalein.

Rót cốc thứ ba vào cốc thú năm thì kiềm bị axit HCl trung hòa nên phenolphtalein mất màu nhưng kết tủa $\left.\mathrm{Fe}_{4}[\mathrm{FerCN})_{4}\right]_{3}$ xuất hiện trở lại làm cho dung dịch lại có màu xanh lam.

67 - Cò nhièu màu

Lấy tờ giấy trấng hình chữ nhật, dùng bút chì kẻ theo chiều dài tờ giấy thành ba phần bà̀ng nhau:

Chuổn bị các dung dịch sau: Hòa tan một thìa muối kali ferixianua vào một ống nghiệm nước thứ nhất, một thìa kali hoặc amoni sunfoxianua vào một ống nghiệm nước thứ hai và một thìa muối Mohr vào một nửa ống nghiệm nước thứ ba (mỗi thìa tương dưong $5-10 \mathrm{mg}$).

Dùng bút lông tô dung dịch thúu nhät (kali ferixianua) vào ô thư nhất của tờ giấy. Rửa sạch bút rồi tô dung dịch thú hai (kali hoạ̣c amoni sunfoxianua) vào ô thứ ba (ô giữa để trắng). Dể khô, rồi dán tờ giấy đó lên tường, lúc này nó chưa có màu gl.

Láy bút lông nhúng vào dung dịch trong suốt thư ba (muối Mohrltô lên tờ giấy trên. Lập tức tờ giấy này biến thành lá cờ có
màu sác sạ́c sõ.
Giải thich: Muối Mohr có thành phần là ($\left.\mathrm{NH}_{3}\right)_{2} \mathrm{Fe}_{\left(\mathrm{SO}_{4}\right)}^{)_{2}} \mathrm{KH}_{2} \mathrm{O}$ tức là chứa ion Fe^{2+}. Khi đun nóng muối Mohr tác dụng với dung dịch kali ferixianua xảy ra phản ứng:

$$
\begin{aligned}
3 \mathrm{Fe}^{2+}+6\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}= & \mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{6}, \\
& \text { Màu xanh Turnbull }
\end{aligned}
$$

Tác dụng của muối Mohr với dung dịch kali hoạc amoni sunfoxianua lúc đầu tạo ra muối $\mathrm{Fe}(\mathrm{CNS})_{2}$ màu lục trong không khí. Muối này bị oxi hóa thành $\mathrm{Fe}\left(\mathrm{CNS}_{3}\right.$ màu dỏ máu.

68 - Quấy "nươ 1ã" thành "rựu mùi"

Bạn giơ cho mọi người xem cốc "nước lã" trong suốt và quấy nước bả̀ng một đũa thủy tinh, cớc nước vẫn không màu.

Bạn tuyên bố rà̀ng có phép lạ: có thể quấy "nước lã" thành "rự̛̣u mùi" rồi lại quấy lên, quả nhiên cốc "nước lâ" biến ngay thành cốc "rượu mùi" có màu hồng.

Cách làm: "Nước lã" ở đây là dung dịch kiềm.
Ví dụ $\mathrm{NaOH}, \mathrm{KOH}$... lúc đầu bạn quấy bằng đầu đũa sạch, lần thứ hai bạn bí mật quay đầu đūa để quấy bà̀ng đũa đã được tẩm dung dịch phenolphtalein. Dung dịch kiềm loãng làm cho phenolphtalein không màu chuyển sang màu hồng.

69. Lắc "nước lâ" thành "màu đó"

Rót nước đến nửa bình cầu rời cho thêm vào đó $2-3 \mathrm{ml}$ dung dịch phenolphtalein. Dậy bình bà̀ng nút, ở đáy nút có một khe chứa một mẩu NaOH hoặc KOH . Lác bình sao cho chất lỏng không chạm vào nút, như vậy tất nhiên nước không bị nhuộm mảu.

Khi tuyên bớ là có thể lác "nước lã" thành "màu đỏ" bạn sẽ
lác mạnh hơn, một phần chất kiềm tan vào nước và phenolphtalein có màu đỏ thấm.

70- Thuóc hiện hình

Lấy giấy lọc tẩm dung dịch phenolphtalein rồi phơi khô nó vẫn có màu tráng. Lấy giấy này cát thành chữ hay thành hình tùy ý rồi dán lên giấy trắng. Nhúng tờ giấy này vào dung dịch kiềm loãng chữ hay hình sẽ hiện lên bà̀ng màu hồng rất đẹp như khi rừa ảnh vậy.

71. Những chiếc đũa có phêp lạ

Đật trên bàn ba chiếc cớc dung tích khoảng $0,3 l$ dựng ba chất lỏng trong suốt không màu. Lẩy một đũa thủy tinh, lần lượt khuấy ba cớc thì mối cốc có một màu khác nhau:

Cốc thú nhất- màu hồng;
Cốc thíl hai- màu xanh;
Cớc thí ba- màu vàng.

Sau đó lấy một đũa thủy tinh khác lại lần lượt quấy vào ba cốc trên. Màu của dung dịch trong các cốc lại thay đổi một lần nữa. Cốc thứ nhất chuyển thành không màu, còn hai cốc kia chuyền thành màu đỏ, nhưng có sác thái khác nhau.

Giải thích: Phải pha ba cốc bà̀ng ba loại thuốc thử khác nhau. Cốc thứ nhất là dung dịch phenolphtalein, cốc thúu hai: dung dịch rượu quỳ và cốc thú ba: dung dịch metyl da cam.

Còn những chiếc đũa thủy tinh, thực ra là những ống thủy tinh. Trong ruột của ống thúu nhất chứa dung dịch NaOH , còn ruột ông thú hai chứa axit HCl . Người biểu diễn dùng ngón tay trỏ bịt đầu ống. Khi khuấy mở ngón tay thả dung dịch xut hay axit xuống, đủ để làm đởi màu chất chì thị.

72- Biến "mẩu phấn" thành "con rẳn"

Lấy que diêm dang cháy hoạc sợi dây kim loại nung nơng cho tiếp xúc "mẩu phấn", lập tức từ "mẩu phấn" tráng, một "con rắn" màu vàng xám có vết lớm đốm bắt đầu trườn ra. "Con rán" vươn dài, rồi cuộn lại, độ dài của nó có thể đạt tới nửa mét. Rồi "con rắn" nằm im không nhúc nhich nhưng tiếp tục phun ra những ngọn lửa màu xanh.

Giải thích: "Mẩu phấn" ở đây là hợp chất thủy ngân sunfoxianua $\mathrm{Hg}(\mathrm{NCS})_{2}$. Hợp chất này khi bị nung nóng thì sẽ phân hủy.

$$
2 \mathrm{Hg}(\mathrm{NCS})_{2}=2 \mathrm{HgS}+\mathrm{CS}_{2}+\mathrm{C}_{3} \mathrm{~N}_{4}
$$

"Con rắn" bò ra từ "mẩu phấn" chính là hốn hợp thủy ngân sunfua và cacbon sunfua bốc cháy trong không khí với ngọn lưa màu xanh, tạo thành khí SO_{2}.

$$
\mathrm{CS}_{2}+3 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{SO}_{2}
$$

Vi thế có những ngọn lửa nhỏ màu xanh phụt ra trên mình "con rán".

Chú ý: Rửa tay thật sạch sau khi biểu diễn thí nghiệm vì họp chất của thủy ngân rất độc.

73- Cắt chảy máu tay

Bạn cầm một con dao sáng loáng cứa vào lòng bàn tay, lập tức lưỡi dao của bạn bị nhuốm "máu" và từ lòng bàn tay những giọt "máu" đỏ tươi chảy xuống.

Bạn rửa sạch "máu" và đưa lòng bàn tay vừa bị cát cho mọi người xem. Nhưng lạ thay! Tay bạn không hề bị thương.

Cách làm: Dùng dung dịch FeCl_{3} nồng độ 3.5% (màu vàng nhạt) xoa lòng bàn tay nói ràng đó là "nước iot loãng" để sát trùng trước khi cất, và dùng dung dịch KCNS nồng độ 3-5\% (không màu) làm "nước" để rửa lưỡi dao. Chú ý: cần để cho các dung dịch trên còn dinh lại trong lòng bàn tay và trên lưỡi dao càng nhiều càng tốt. Dùng lưỡi daoo cùn nhưng đã được đánh sáng loáng lướt nhẹ lên lòng bàn tay, lập tức "máu" sẽ chảy ra.

Giải thich: FeCl_{3} tác dụng với KCNS tạo thành chất $\mathrm{Fe}(\mathrm{CNS})_{3}$ có màu đỏ máu.

$$
\mathrm{FeCl}_{3}+3 \mathrm{KCNS}=\mathrm{Fe}(\mathrm{CNS})_{3}+3 \mathrm{KCl}
$$

Màu đỏ xuất hiện ngay cả trong những dung dịch có nồng độ ion Fe^{3+} rất thấp, nên phản ứng tạo ra $\mathrm{Fe}(\mathrm{CNS})_{3}$ được sử dụng rộng rãi trong phân tích định tính và dịnh lượng.

74- Lột da bàn tay

Cầm dao cứa vào tay rồi lột da tay từ từ "máu" sê ưa ra và mặt nhăn lại đau đớn.

Cách làm: Bôi một lớp mỏng glixerin vào lòng bàn tay, sau đó bôi một lớp colođiong lên trên. Đợi lớp colođiong khô, lại bôi tiếp một lớp thứ hai. Lớp colođiong dày sẽ bóc khỏi da tay. Xoa lên lớp colođiong một dung dịch muối sắt (III) ví dụ $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. Khi biểu diễn ta cầm con dao cùn đã nhúng vào dung dịch KCNS đật má dao áp lên trên lòng bàn tay cứa và từ từ lột lớp colođiong lên. "Máu" sẽ chảy đỏ bàn tay.

Giải thích: Colođiong tạo màng mỏng hơi ngà ngà nâu giống màu da tay. Màng mỏng colođiong bám vào tay và có thể bóc ra dễ dàng. Dung dịch $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ sẽ tác dụng với dung dịch KCNS tạo ra chất $\mathrm{Fe}(\mathrm{CNS})_{3}$ có mảu đỏ máu. Bôi glixerin lên da dể lớp colođiong không bám quá chắc vào da tay làm cho khó "lột da".

Chú \dot{y} : Có thể dùng phim ảnh hòa tan vào axeton hay etyl axetat thay dung dich colodiong.

75- Dốt cháy bàn tay

Xán tay áo rồi nhúng cả bàn tay và cổ tay vào chậu nước. Sau đó nhỏ vài giọt ete hay axeton vào lòng bàn tay và châm nhanh ngọn lửa đèn cồn. Bàn tay sē bát lửa và bốc cháy. Bạn dừng sợ, ete hay axeton sē cháy rất nhanh và chỉ một loáng là cháy hết, ngọn lửa sẽ tắt. Bạn chỉ thấy hơi nóng chứ không hề bị bỏng.

Giải thich:
Ete và axeton là những chất bay hơi rất nhanh và bắt lửa rất mạnh. Với vài giọt các
 chất trên, khi cháy nhiệt lượng tỏa ra chỉ đủ để làm bay hai một phần nước trén da tay. Vì thế ta chỉ cám thấy hơi nóng chứ không bị bỏng.

76- Dớt khăn không cháy

Nhúng ướt một khān mùi soa, sau đó nhỏ lên khăn vài giọt ete hay axeton rồi đớt. Khi khăn cháy cầm một gớc khăn vung mạnh. Một lúc sau lửa tả́t. chiếc khăn vẫn nguyên vẹn.

77- Phát hiện dáu tay

Dể điều tra các vụ án mạng hay trộm cắp, công an thường rác bột để phát hiện dấu tay của thủ phạm.

Ta cũng có thể biểu diễn thí nghiệm vui này.
Bạn đưa một tờ giấy trấng và sạch cho khán giả và yêu cầu họ bí mật in đầu ngón tay cái và ngón tay trỏ ở hai bàn tay của một người nào đó lên tờ giấy. Bạn thu lại tờ giấy và mang đậy úp tờ giấy lên miệng lọ dựng cồn iot. Sau một thời gian lấy ra bạn sẽ thấy rõ các dấu tay xuất hiện trên giấy. Bạn chi cần thu chứng minh thư của khán giả để đối chiếu dấu tay tìm ngay được "thủ phạm".

Giải thich: Khi ta in tay lên giấy, tay ta sẽ để lại trên giấy vết mõ̃ cưa da. Iot sẽ hòa tan vết mõ̃ này làm xuất hiện dấu tay.

NHƯNG DUNG D!̣CH PHÁT SÁNG

Nhiều quá trình hóa học xảy ra kèm theo hiện tượng phát sáng do nãng lượng phản ứng không chuyển thành nhiệt năng như bình thường, mà thành quang nảng.

78- Dung dịch phát quang màu đó

Bạn hãy cho khí clo sục từ từ vào dung dịch chứa $10 g \mathrm{NaOH}$ và $30 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2} 3 \%$ trong 100 ml nước. Khi đó sē xảy ra phản ưng:

$$
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}=2 \mathrm{HCl}+\mathrm{O}_{2}
$$

Oxi sinh ra trong phản ưng luôn luôn ở trạng thái kích thích và phát rà ánh sáng màu đỏ.

Nêu bạn muốn có một không gian sáng tỏ, bạn chi việc hướng dòng khí clo lên bề mặt dung dịch.

79- Kết tinh phát sáng

Một hiện tượng khá lí thú mè ta có thể quan sát được khi kết tinh một số loại muối là hiện tượng lóe sáng và được gọi là sự phat quang tinh thể.

Trước hết, bạn hãy điều chế tinh thể $\mathrm{Ba}\left(\mathrm{BrO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ bằng cách trộn những lượng tương đương hai dung dịch nguội KBrO_{3} và $\mathrm{BaCl}_{2}\left(100 \mathrm{~g}\right.$ nước hòa tan $3,1 \mathrm{~g} \mathrm{KBrO}_{3}$ ở $^{\circ} 0^{\circ} \mathrm{C}$). Khi làm lạnh tinh thể bari bromat tráng, hình kim sẽ kết tủa xuống.

Độ hòa tan của nó trong nước lạnh không lớn. Lọc lấy muối kết tủa và rửa bằng nưóc lạnh rồi sấy khô.

Bây giờ, bạn hòa tan $2 \mathrm{~g} \mathrm{Ba}\left(\mathrm{BrO}_{3}\right)_{2}$ trong 50 ml nước sôi và khi dung dịch nguội đến nhiệt độ $40-45^{\circ} \mathrm{C}$ thì nó sẽ phát ra tia
sáng màu xanh cùng với những ậm thanh nhè nhẹ, đồng thời xuất hiện những tinh thể dưới đáy cốc.

Hiện tượng này cũng xảy ra khi bạn dùng dủa thủy tinh cạo kết tủa bari bromat (khi điều chêe) bám trên thành xuống đáy cốc.

80- Dung dịch huỳnh quang

Lấy một ít lá xanh bất kì ngâm vào rượu để chiết lấy diệp lục tó́. Lọc lấy dung dịch và bảo quản trong bóng tối. Ban đêm dưới tác dụng của một chùm ánh sáng trăng, dung dịch này sẽ phát ra ánh sáng màu đỏ.

81- Dung dịch phãt quang màu xanh

Nếu bạn muốn có một bông hoa, dòng chũ hoạc bàn tay hay những vật có hình dạng mà bạn thích, phát ra ánh sáng màu xanh rǎ́t dẹp trong bớng tối, bạn chỉ việc nhúng nó vào một dung dịch phát quang được điều chế như sau:

Lấy hốn hợp gồm 25 ml dung dịch $\mathrm{H}_{2} \mathrm{O}_{2} 3 \%$ và 25 ml dung dịch muối kali ferixianua $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (hòa $\tan 0,5 \mathrm{~g} \quad \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ vào $1 l$ nước).

Sau đó cho thêm vào một lượng tương đương dung dịch kièm nhẹ trong đó có $0,1 g$ chất phát quang (3-aminophtahiđrazin). Dung dịch này sẽ phát sáng khoảng 5 phút.

Quá trình điều chế chất phát quang:
3- aminophtahidrazin tiến hành theo ba giai doạn:

- Trong giai doạn thú nhất, cà̀n thu được axit 3- nitrophtalic từ axit phtalic hay là anhiđrít của nó, hoạ̣c từ phtalazon dược liệu.

Trước hết nitro hóa axit hoạac anhiđrit phtalic trong môi trường
$\mathrm{H}_{2} \mathrm{SO}_{4}$ bà̀ng HNO_{3} hoặc NaNO_{3}.

- Trong giai doạn thú hai, để thu được 3-nitrophtahiđrazin cần có hidrazin $\mathrm{N}_{2} \mathrm{H}_{4}$ hoạ̣c sunfat hay diclorua hidrazin $\mathrm{N}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{HCl}$.
- Trong một lượng nước vừa đủ, cho vào khoảng $3,25 g$ hiđrazinsunfat $\mathrm{N}_{2} \mathrm{H}_{4} . \mathrm{H}_{2} \mathrm{SO}_{4} ; 6,8 g$ natri axetat; $5,3 g$ axit 3 nitrophtalic và đem bóc hơi dung dịch đến khô.
- Ó giai doạn thứ ba, bạn sẽ chuyển 3- nitrophtahiđrazin thành 3- aminophtahiđrazín bà̀ng phản ứng amin hơa nhờ một muối sunfua (amoni hoặc natrị). Cho khoảng 8 g (không nhiều hơn) natri sunfua vào 20 ml nước và bổ sung vào khoảng 5 g 3 nitrophtahiđrazin. Đun sôi hỗn hợp và duy trì trong khoảng $5-8 p h u ́ t$, hỗn hợp sẽ có màu nâu. Làm nguội dung dịch trong không khí để. cho hỡn hơp màu vàng của chất phát quang và lưu huỳnh kết xuống. Thêm vào một lượng nhỏ dung dịch xut đậm đạ̃c đến khi phần lớn kết tủa được hòa tan, đem lọc để tách dung dịch phát quang khỏi lưu huỳnh. Thêm axit axetic đậm đạ̣c vào nước lọc có màu vàng nhạt ấy, tới khi kết tủa trấng như tuyết được tách ra, đó là chất phát quang 3- aminophtahiđrazin. Lọc kết tủa và sấy khô. Các phản ứng xảy ra như sau:

HNO_{3} hoăc NaNO_{3} $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

anhidrit phtalic

3- nitrophtahidrazin

3- aminophtahidrazin
(chất phát quang)

82- Dung dịch phăt sáng trong bōng tói

Lấy $1 g$ hidroquinon và $5 g$ potat hòa tan trong 40 ml dung dịch fomanđehit 10%, đổ vào trong bình lớn hơn $l l$ và đặt đo nhiệt độ phòng.

Khi mất đã quen với bóng tới, thì thêm 15 ml dung dịch hiadropeoxit $\mathrm{H}_{2} \mathrm{O}_{2}$. Trong bình sủi bọt và xuất hiện ánh sáng màu vàng.

Sự phát quang ở đây là do hiđroquinon bị oxi hóa bầng $\mathrm{H}_{2} \mathrm{O}_{2}$ trong môi trường kiền. Nang lượng thoát ra hầu như hoàn toàn chuyển thành ánh sáng, một phần phát ra dưới dạng nhiệt và làm cho fomanđehit bốc hơi (do đó không nên đậy bình).

83- Chiếc bỉnh phát sáng

Trộn $200 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4}$ với $81,5 \mathrm{~g} \mathrm{Na} \mathbf{N a}_{\mathbf{4}} \mathrm{SO}_{\downarrow}$, đổ một ít nước nơng vào hổn hợp đến khi tất cả các tinh thể muối đều tan. Để nguộ dung dịch trong phòng tối.

Sau khi nguội, trong dung dịch kết tinh khá nhiều tinh thẻ muối mới và sự tạo thành mối tinh thể kèm theo sự phát sáng. Những tia sáng yễu xuất hiện ngay từ nhiệt độ $60^{\circ} \mathrm{C}$, sau đó trở nên sáng hơn và cuối cùng xuất hiện như một trận mưa các tia sáng màu xanh lam nhạt (thời gian này phải đợi khá lâu, khoảng 1 giờ rưỡi). Dôi khi những tia sáng hình như nhảy từ thành binh bên này sang thành bình bên kia. Ghé tai vào thành bình, bạn sẽ nghe thấy những tiếng lép bép nhỏ. Thật là "cơn giông tớ trong thér giới vi mô".

Khi sự phát sáng ngừng, ta có thể tạo lại một lần nữa bằng cách lắc bỉnh hay dùng dũa thủy tinh đảo các tinh thể muối dươi chất lỏng.

Giải thich: Trong thi nghiệm này, sự phât sáng có liên quan tới quá trình hơa học. Sự tạo thành muới kép $2 \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ và quá trình kết tinh của nó.

84- Trắng và đen

Cho hai thìa stronti clorua vào một cốc, và cho một thìa tanin vào một cốc khác. Đố vào mỡi cốc một thìa nước và lắc cho đến khi các chất trong cốc tan hết, sao cho người xem không biết trong cốc có nước. Trong cớc thứ ba chứa đầy nước, ta hòa tan năm thìa muối Mohr $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

Bây giờ hãy đổ dung dịch của cốc thứ ba vào hai cốc "sạch" nợi trên, tức thì ở cốc thứ nhất ta có "sửa", còn cốc thứ hai có "1hực" đen.

Giải thich: Khi đổ dung dịch muối Mohr vào thì chủ yếu là sất (II) sunfat tác dụng với hai chất kia.

Khi sất sunfat tác dụng với dung dịch stronti clorua, sẽ có phản ứng trao đởi:

$$
\mathrm{SrCl}_{2}+\mathrm{FeSO}_{4}=\mathrm{SrSO}_{4}+\mathrm{FeCl}_{2}
$$

SrSO_{4} tan rất ít trong nước nên kết tủa ở dạng huyền phù tráng, trông như sưa.

- Khi tác dụng với tanin, sắt sunfat tạo thành dung dịch có màu xanh. Nhựng muối sất (II) dẽ̃ bị oxi của không khí oxi hóa thành muối sát (III), muó́i nãy tạo thành với tanin kết tủa xanh đen là muối phức của Fe^{3+} và tanin.

85- Trái tim thủy ngân

Rốt vào một chén bằng sứ hoạ̣c bằng thủy tinh lõm đáy khoảng 10 ml dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4} 10 \mathrm{zt}$ và hòa tan vào đó khoảng $0,05 \mathrm{~g}$ tinh
thể muối $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. Sau đó rót thêm vào chén một it thủy ngân để tạo thành một giọt thủy ngân cớ đường kính khoảng $1.5-2 \mathrm{~cm}$ và chìm hả̉n trong dung dịch đó. Kẹp chặt một cái kim bàng sắt bình thường vào một cái giá và để cho mũi kim tiếp xúc với cạnh giọt thủy ngân.

Thật kì lạ! Khi mũi kim vừa chạm vào giọt thủy ngân thì lập tức giọt thủy ngân co lại như sợ mũi kim đâm, sau đó lại nở ra và khi chạm vào mũi kim, nớ lại lập tức co lại. Hiện tượng này cứ lạ̣p đi, lạap lại trông không khác gì trái tim đang co bơp.

Giai thich: Trong dung dịch sunfocromic $\left(\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{-}\right)$, trên bề mạat giọt thủy ngân tạo thành một màng oxit mỏng. lam giảm sức cãng bề mặt và giọt thủy ngân có dạng khối cầu dẹt. Khi tiếp xúc với muni kim, giữa sất và thủy ngân xuất hiện một dòng điện cho màng oxit bị phá hủy, sức cǎng bề mặt của giọt
thưy ngân tãng lên và nó co lại để có dạng khối cầu. Khi thủy ngân tách khỏi mũi kim, dòng điện bị ngắt và một lần nữa lại tạo thành màng oxit, sức cãng bề mặt giảm, giọt thủy ngân dẹt xuống và lại chạm vào mūi kim, màng oxit bị phá hủy, giọt thủy ngân bị co lại v.v... cứ thế tiếp diễn liên tục.

86- Biến dồng thành "bạc"

Ai cũng biết ràng bạc là kim loại quý, thế mà ta có thể biến đồng thành "bạc" như một nhà giả kim thuật thời Trung Cổ.

Lấy một vật nào đó bà̀ng đồng, thí dụ cái chìa khơa. Nhúng chìa khơa vào dung dịch HNO_{3} loãng, sau đó rừa sạch bằng nước (không để lâu vì HNO_{3} hòa tan đö̀ng).

Thả chia khơa vào dung dịch HgCl_{2}. Sau dó vài phút lấy chiếc chìa khơa ra, chìa khơa cơ màu rất bẩn. Nhưng néu lấy tờ giấy lọc hoặc mảnh vải lau thật sạch, chìa khơa sẽ sáng bơng tráng như bạc vậy.

Giải thich: Trong thí nghiệm này xảy ra phản ứng hóa học sau:

$$
\mathrm{Cu}+\mathrm{HgCl}_{2}=\mathrm{CuCl}_{2}+\mathrm{Hg}
$$

Thủy ngân sinh ra có đạ̣c tính kết hợp với đồng thành hỗn hống bám chạ̣t lên mạat đồng làm cho chìa khóa sáng như bạc, chứ không phải là những giọt thủy ngân rời rạc.

Chúu ý: Rửa sạch tay sau thí nghiệm vì HgCl_{2} dộc.

87- Tù thiếc chế ra "vang"

Nếu là bạn là người ua thích màu vàng vương giả, rực rõ, sang trọng và tươi trẻ thì đó không phải là sự lạ vì từ bao đời nay người ta đã ... mê mệt vì vàng rồi. Các lǎng tẩm, mọ các
pharaong quyền quý Ai Cập rực rõ̃ trong ánh sáng vàng của đồ trang sức. Những ngôi đền, chùa sơn son thiếp vàng Thái Lan là nơi mọi du khách tới đất nước này đêu ao ước được tận mất ngám nghía. Những bức tranh cố qứy giá trong viện bảo tàng dều được đạt trong những chiếc khung chạm trở cằu kì, lấp lánh, làm tãng bội phần giá trị của bức tranh... Từ ngày xưa, xuyên suốt cả lịch sử hóa học từ thế kỷ IX tới thế kỷ XVI, các nhà giả kim thuật

đã mải mê tìm "hòn đá triết lí" điều chế vàng. Những ước mơ ấy chưa bao giờ được thực hiện với trình độ khoa học cũng như hóa học lúc đó. Ngày nay, từ các kim loại nặng, con người có thé biến chúng thành vàng trong lò phàn ứng nguyên tử. Còn bạn, nếu như không... có sẵn lò phản ứng nguyên tử trong tay, nếu muốn trở thành "thầy phù thủy", bạn có thể tạo ra được "vàng" từ thiếc, tất nhiên không phải là vàng xịn 9999 mà trông "như xịn", để trang trí ngôi nhà và các vật dụng của mình.

1. Nguyên liệu "luyện vàng"

- Lưu huỳnh S: 1 phần (trọng lượng).
- Amoniclorua $\mathrm{NH}_{4} \mathrm{Cl}: 4$ phần

- Thiếc Sn: 2phằn

- Bếp điện, cối sứ để nghiền, thuyền sứ để nung.

2. Thưc hiẹn

Chuẩn bị một hỗn hợp gồm 1 phần S và $4 p h a ̂ ̀ n ~ \mathrm{NH}_{4} \mathrm{Cl}$ sau đó đem nghiền nhỏ trong cối sứ rồi cho vào một thuyền sứ. Láy mảnh thiếc cán mỏng (2 phần trọng lượng) đậy lên thuyền sứ. Mảnh thiếc này được chế từ thiếc hạt: đun chảy vài hạt thiếc, sau rớt cẩn thận lên bề mặt viên gạch hoa nguội.

Đặt thuyền sứ vào lò nung hay bếp điện để nung đến nhiệt độ khoảng $200^{\circ} \mathrm{C}$. Xin các "thầy phù thủy" lưu ý rà̀ng có khí độc bay ra nên "lò luyện" phải tiến hành trong tủ hút khí. Ngừng đun sau lgiờ, để nguội thuyền sứ và lấy các mảnh thiếc mỏng ra. Các mảnh này mới chỉ có màu hung đỏ. Khoáng các mảnh thiếc này trong cốc nước để tách riêng ra các hạt lơ lửng màu vàng, sau đó đư nơng cốc nước để những hạt lơ lửng tuyệt đẹp này láng xuống. Lọc và đem sấy khô kết tủa. Nếu dem bột này trộn lẫn với dằu sơn ta được một loại sơn màu vàng đẹp. Chất màu vàng là thiếc đisunfua SnS_{2}
$2 \mathrm{Sn}+2 \mathrm{~S}+6 \mathrm{NH}_{4} \mathrm{Cl}=\mathrm{SnS}_{2}+\left(\mathrm{NH}_{4} \mathrm{Cl}_{2} \mathrm{SnCl}_{6}+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2}\right.$
Cần lấy dư S và $\mathrm{NH}_{4} \mathrm{Cl}$ vi hai chất này bị bay đi một phần khi nung.

88. Diều chế vàng hỏa tan

Bạn tự giới thiệu là nhà giả kim thuật vừa mới tìm ra phương pháp điều chế vàng.

Trong một cốc, chuẩn bị khoảng 150 mll chì axetat. Để cho dung dịch hoàn toàn trong suốt, nên nhỏ thêm vào vài giọt axit axetic. Trong một cốc khác. chuẩn bị dung dịch kali iodua. Mỗi chất lấy $0,3-0,5 g$.

Đun sôi các dung dịch trên rồi rót vào bình hình nón, dung tích khoȧng $0,5 l$. Từ hai dung dịch không màu ta thu được một
dung dịch màu vàng trong suốt.
Lấy khăn mặt tẩm nước lạnh quấn quanh bình. Sau một thời gian, tháo khăn mặt ra, bạn sẽ thấy trong bình có những tỉnh thể màu vàng rất đẹp.

Giải thich: Trong thí nghiệm có phản ứng hơa học:

$$
\mathrm{Pb}^{\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}}+2 \mathrm{KI}=\mathrm{PbI}_{2}+2 \mathrm{CH}_{3} \mathrm{COOK}
$$

Khi làm lạnh độ tan của PbI_{2} giảm nên trong dung dịch xuất hiện các tinh thë̉ rán màu vàng. Ơ $100^{\circ} \mathrm{C}$, độ tan của PbI_{2} là 9 mol/l nhưng ở $25^{\circ} \mathrm{C}$ dộ tan của nó chỉ còn $1,6 \mathrm{~mol} / \mathrm{l}$.

Chú ý: Cần làm thử trước để xác định thời gian làm lạnh kết tinh và rửa tay sạch sau thí nghiệm vì muối chì độc.

89- Tấm thảm bay

Lấy một miếng vải nhỏ, sạ̣c sỡ (giống như một tấm thảm) buộc vào bốn gớc những sợi chí đã tẩm đi, tẩm lại nhiều lần bà̀ng dung dịch muối ăn bão hòa rồi phơi khô.

Buộc đầu kia của những sợi chỉ vào bốn điểm cố định, làm thành một tấm thảm treo. Sau đó lấy diêm đốt cháy những sợi chỉ, tấm thảm sẽ không rơi mà như bay lơ lửng trong không khi.

Giải thích: Khi nước bay hơi, những sợi bông trong chỉ cháy bình thường, nhưng các tinh thể muối ăn gần như không màu mà ta đã tẩm trước trong chỉ thì vẫn còn lại. Chúng dính vào nhau khá chặt đủ sức giữ tấm thàm không bị rơi.

Ảo thuật sẽ như thật nêu làm vào bươi tới và người biểu diễn đứng phía sau, mặc áo sẫm màu. Cần chọn sợi chỉ khá dạy.

90- Nui lưa phun

Lấy 100 g mạt sát mịn cùng với 50 g lưu huỳnh bột. Trộn kỉ và đổ vào một chút nước nóng cho tới khi hỗn hợp trở nên sền sệt. Sau đó, đạ̣t hỗn hợp lên một đỉa hoặc khay sất và lấy đất sét nhão trộn với những hòn sỏi nhỏ, đắp phủ lên hốn hợp mạt sát và lưu huỳnh, sao cho gióng như một ngọn núi thực sự. Dùng que gỗ chọc từ miệng núi một lỗ, qua lớp đất sét.

Sau 10-12 phuit núi lửa tí hon bắt đầu hoạt động. Từ miệng phun, khói bốc mù mịt và "dung nham" phun trào ra dữ dội, giống hệt một ngọn nưi lửa trong thiên nhiên, chỉ thiếu tiếng nớ.

Giải thich: Fe và S sau khi tiếp xúc với một thòi gian ngắn, bát đầu phản ứng tạo thành FeS. Phản ứng tỏa nhiệt làm nước bốc hơi và cũng nhờ nhiệt phản ứng mạnh, làm cả khối "sôi" trào ra ngoài.

91- Lai núi lưa

La̛y đất sét đáp thành hỉnh quả núi nhò cao độ $15-20 \mathrm{~cm}$, dường kính khoảng 20 cm . Khoét rỗng trong lòng quả núi, phơi khô (không cần khô hả̉n) rời đặt lên một miếng gỗ. Trên đỉnh núi khoét một miệng tròn bằng miệng chén uống nước nhỏ. Lấy một hộp sất sữa bò độn vào trong lòng quả núi.

Trộn khoảng $150 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ với 10 g than bột sấy khô và một thila nhôm bột (nếu không cơ nhôm bột cūng được). Dổ hỗn hợp vào hộp sất. Trên hổn hợp cho độ 1 g vụn magie kim loại hay một hai đoạn sợi magie. Lấy một mảnh giấy báo đã tẩm xãng bay benzen đật lên trên magie. Trên cùng đặt một miếng natri kim loại to bàng hạt ngô. Nhỏ vài giọt nước vào đúng miéng natri. Ngọn lửa sẽ bùng lên ở miệng núi. Lúc đầu có các tia sáng màu vàng, rồi tia sáng tráng bán ra, sau cùng núi lửa phun ra rất
mạnh những tia sáng màu vàng. Ngọn lửa phun ra khá cao khoảng 0,3-1m.

Giải thich: Na tác dụng với nước giải phơng ra H_{2}. Phản ứng tỏa nhiệt mạnh làm cháy H_{2} rồi Na . Sau đó cháy vào giấy có tẩm xăng hay benzen. Magie được đốt cháy mạnh tạo thành điều kiện cho $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ phân hủy mạnh. Phản úng phân hủy này có kèn theo sự tỏa nhiệt mạnh làm nóng đỏ các hạt $\mathrm{Cr}_{2} \mathrm{O}_{3}$, đồng thời có hơi nước và nitơ thoát ra mạnh làm bắn tung các hạt $\mathrm{Cr}_{2} \mathrm{O}_{3}$ lên thành những tia lửa phun ra ngoài miệng núi.

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{t}^{\mathrm{o}} \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3}+123 \mathrm{kcal}
$$

Chú ý: Nếu không có $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ta có thể dùng hổn họp thay thế sau đây vẫn có phản ứng xảy ra tốt: $3 p h a ̀ ̀ n \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ và lphà̀n $\mathrm{NH}_{4} \mathrm{Cl}$ về khối lượng. $\left(\mathrm{NH}_{4} \mathrm{Cl}\right.$ cần sấy khô trước rồi mới trộn vá̛i $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$).

92- Giấy... biết chạy

Gấp đôi cảc bãng giấy rồi dựng đứng trên mặt bàn. Lấy đầu đũa thủy tinh chạm vào các băng giấy đó. Kỳ lạ thay! Các băng giấy chạy bán đi như sợ hãi chiếc đūa thủy tinh.

Cách làm: Lấy giấy lọc cất thành dải hẹp và tẩm vào dung dịch iot trong nước amoniac 25% rồi phơi khô. Như vậy các bảng giấy dã dược tẩm nitơ iơua, thực chất là hợp chất của NI_{3} với một lượng amoniac biến thiên. Nitơ iơua rất không bền và ở dạng khô có thể nổ khi được một vật rán tiếp xúc.

Băng giấy càng chạy mạnh nếu được tẩm kỉ và nồng độ dung dịch nito iođua càng đậm đặc.

93- Vuờn cây cảnh trong chậu thùy tinh

Ta có thể tái hiện tất cả những màu sác phong phú của một vườn cây cảnh trong một "Vườn cây hóa học".

Ò đây "môi trường dinh dưỡng" sẽ là dung dịch keo silicat điều chẽ̛ theo tỉ lệ: 1 thể tích keo trong 1,5 thể tích nước. Dế có được những "cây" có màu sắc khác nhau cần sử dụng tinh thể của những muối xác định.

Dặt một vài tinh thể muối niken (thí dụ muối niken sunfat) vào đáy cớc (chậu! thủy tinh, ngày hôm sau ta sẽ thấy mọc lên một đám cò màu lục tươi. Cūng bẳng cách đó ta có thể "cấy" được "cỏ" có một màu kì lạ bắt kì. Chẳng hạn muốn có màu lam ta cần đặt ờ đáy cớc những tinh thể đồng sunfat, vài ngày sau trong cốc sẽ xuất hiện một "đám có" màu lam.

Ta có thể tạo được "cây" màu đỏ nâu với "hạt giống" là các tinh thể thủy ngân (II) clorua. Dể tạo ra "cây" màu nâu ta dùng các tỉnh thể sất (III) clorua. Trong chậu thủy tinh chứa dung dịch
keo; sau khoảng 10-15 phút sẽ xuất hiện những "cây" nhiều cành lá mà ngọn cơ thể vươn lên dến mặt thoáng của dung dịch. Nếu ta bỏ vài tinh thể nhỏ muối coban - chẩng hạn coban clorua vào cốc chứa dung dịch keo thì chẩng bao lâu sẽ xuất hiện những mầm cây màu xanh dịu. Nếu ta bỏ thêm hai, ba tinh thể nhỏ muối mangan vào cùng chậu đó, thì ở các mầm cây xanh sē mọc thêm các "mầm" màu hồng. Ta cũng có thể "trồng" trong chậu thủy tinh chứa dung dịch keo một "khóm hoa" sặc sõ̃ bằng cách cho vào đó đồng thời các tinh thể muối kẽm, coban, mangan, sát (III) niken và đồng.

Cũng có thẻ thực hiện việc trồng các loạ "tảo" bằng cách cho thêm nước và dung dịch keo silicat đã điều chế trước theo tỉ lệ thể tích : 1: 1 và thả vào cốc (chậu) vài tỉnh thể nhơ muối sát (II) (phèn sát). Sau một thời gian trong cốc xuất hiện một bụi tảo dày đặc.

Bản chất những hiện tượng xảy ra trong các thí nghiệm với dung dịch keo silicat như sau: dung dịch keo là dung dịch trong nước của silicat kim loại kiềm. Khi phản ứng với silicat kim loại kiềm, các tinh thể nhỏ của muối, chả̉ng hạn niken sunfat được bao bọc một màng niken silicat không tan.

$$
\mathrm{NiSO}_{4}+\mathrm{Na}_{2} \mathrm{SiO}_{3}=\mathrm{NiSiO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

Nước khuếch tán qua màng đớ và tinh thể bắt đầu hòa tan. Vi màng đó cho nước đi qua nhưng lại không cho các ion của muối hòa tan đi qua, nên áp lực bên trong màng tăng lên rõ rệt. Do áp lực đó, màng bị phá vỡ, giọt dung dịch muối chảy ra và tác dụng ngay với silicat kim loại kiềm tạo thành màng.

Màng bán thẩm cứ tạo thành và bị phá vỡ như vậy, làm mọc lên những "cây" hóa học từ các tinh thể.

94- Phong cảnh mùa đông xứ lạh

Dun nóng nước (tốt nhất là nước cất) rồi hòa tan chì nitrat vào đớ với tỉ lệ 25 g muối trong 100 g nước. Sau đớ lấy một chậu thủy tinh thành dày và dặt ở đáy chậu một số tinh thể nhỏ amoni clorua, để cách nhau.

Chờ cho đến khi dung dịch muối chì nitrat nguội thì đổ nó vào chậu thửy tinh. Những "màu" trắng như tuyết do chì clorua tạo thành sẽ nhanh chơng xuất hiện ơ các tinh thế.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NH}_{4} \mathrm{Cl}=\mathrm{PbCl}_{2}+2 \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

Các "mà̀m" sẽ phát triển khá nhanh về phía trên và mọc thêm những nhánh ở xung quanh. Những "cành" trắng như tuyết dần dần lẫn với nhau và sau một giờ, một "phong cảnh mùa đông" sẽ xuất hiện trước mạ̀t bạn.

95- Phong cảnh mùa đông nhiệt đỡi

Đặt vào đáy chậu thủy tinh thành dày độ năm, sáu tinh thể amoni bicromat. Diều chế dung dịch chì nitrat như̛ ờ thi nghiệm trên. Dội dung dịch nguội, rồi rớt vào chậu thủy tinh. Sau một thời gian, do phản ứng giữa $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ và $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ những tinh thể chì cromat hình kim sẽ xuất hiện trên các tinh thể $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}= \\
& =2 \mathrm{PbCrO}_{4}+2 \mathrm{NH}_{4} \mathrm{NO}_{3}+2 \mathrm{HNO}_{3}
\end{aligned}
$$

Các tinh thể hình kim phát triển dần dần và có hình dạng các "cây" trong mùa đông miền nhiệt đới, và sau vài ngày "rừng cây" này sê lan đầy chậu thủy tinh.

Những phong cảnh thu được như trên có thể dùng làm vật trang trí, nhựng phải cẩn thận khi sử dụng chúng: các "cây" hóa
học rất giòn và có thể vụn ra khi bị va chạm hoặc rung.
Chú \mathfrak{y} : $\mathrm{Muối} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ dộc, cần rửa tay thật sạch sau khi làm thi nghiệm.

96- Cây Diana

Nhúng một sợi dây đồng đánh sạch và uốn thành hình lò xo và mợt dung dịch bạc nitrat trong nước, trong dung dịch sẽ xuất hiện một dạng cây bà̀ng bạc gọi là cáy Diana. (Diana là nữ thần La Mã về sãn bán).

Giải thích: Đồng hoạt động hóa học mạnh hơn bạc nên đã đẩy bạc ra khỏi muối. Bạc được giải phóng bám vào sợi dây đồng tạo ra cây bà̀ng bạc

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3}=\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}
$$

97- Bão tuyết

Ó các nước ôn đới, về mùa đông nhà cửa, cây cơi bị tuyết phủ tráng xóa một màu, cảnh vật đẹp một cách nên thơ.

Bạn cớ thể dựng lại y hệt cảnh đơ bằng thí nghiệm sau đây:
Làm một hộp bằng gỗ mỏng hoặc bằng bla cactông cứng có kích thước khoảng: dài 50 cm , rọng 40 cm , cao 10 cm .

Hộp không có náp và chì có ba mặt bên. Giữa đáy hộp ta khoét một lố nhỏ vừa một chén sứ. Xung quanh chén sứ cám nhừng cành cây phi lao nhỏ đé làm một vườn cây. Cho vào chén sứ khoảng $15-20 \mathrm{~g}$ axit benzoic. Dùng chuông thủy tinh hoăc bể nuôi cá vàng bằng thủy tinh úp lên vườn cây trên. Đốt nóng chén sứ, axit benzoic sẽ nơng chảy, sau đó bay hơi mù mịt như lúc đang bão tuyết, rồi "tuyết" sẽ phủ tráng xóa vườn cây của bạn như cảnh mùa đông ở xứ lạnh vậy.

Bạn có thể giữ lại vườn cây này làm cây cảnh trang trí trong nhà.

Giải thich: Axit benzoic $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ là chất rấn, nóng chảy ở $121,5^{\circ} \mathrm{C}$, rất dễ bay hơi. Hoi axit khi nguội đi sê ngưng lại trên cành cây thành chất rấn xốp, trấng trông giống hệt tuyết.

98 - Phong vũ biểu hóa học

Chác các bạn đều muốn có một phong vũ biểu để dự báo thời tiết. Cách làm như sau:

Hóa chất cần dùng: $7,8 \mathrm{~g}$ long não; $1,9 \mathrm{~g} \mathrm{KNO}_{3} ; 1,9 g \mathrm{NH}_{4} \mathrm{Cl}$; 63 g rượu etylic; 60 g nước cát.

Cách làm: Hòa tan KNO_{3} và $\mathrm{NH}_{4} \mathrm{Cl}$ vào nước cất và hòa tan long não vào rượu. Trộn các dung dịch trên vào nhau rồi đun cách thủy hốn hợp, ta sẽ được một chất lỏng trong suốt. Rớt chất lỏng trên vào một ống thủy tinh to, chiều dài khoảng 24 cm , đường kính khoảng 2 cm , nút chặt hai đầu ống bà̀ng nút cao su và nhúng các đầu ống vào parafin nóng chảy cho thật kín. Sau đó cố định ớng thủy tinh lên một giá gỡ, bên cạnh dán một bãng giấy ghi lời dự báo thời tiết cãn cứ vào sự thay đổi trong ống phong vũ biểu như sau:

1 - Có tinh thể xuất hiện trên mặt chất lỏng: trời rét và có mưa.

2-Có tinh thể xuất hiện ở phân dưới ớng: trời trở rét hơn (tinh thể càng lớn nhiệt độ không khi càng thấp).

3 - Các tinh thể tan biến hết: trời trở ấm.
4. Chất lỏng hoàn toàn trong suốt: trời ấm và khô (thời tiết tốt).

5 - Tinh thể xuất hiện ở khắp mọi nơi trong ống và có thể nổi cả lên trên mặt: coi chừng! có thé có bão.

99 - Pháo dây dodn giản

Gồm các hơa chất lấy theo tỉ lệ khối lượng như sau:
$68 \% \mathrm{KNO}_{3}+15 \% \mathrm{~S}+12 \% \mathrm{C}+5 \% \mathrm{Mg}$.
Tất cả đều sấy khô (trừ lưu huỳnh) và nghiền mịn riêng từng thứ. Trộn thật ki hỗn hợp. Cát những bāng giấy bản mỏng ngang 3 cm , rải đều hốn hợp trên bāng giấy rồi cuộn lại theo cách vê xoấn. Trên mật giấy bản mỏng có những sợi nhỏ, có tác dụng kết dính giữ các chất bột mịn không bị rooi. Khi cháy, magie sẽ phát ra những tia sáng tráng trông rẩt đẹp mất:

100- Pháo hoa

Có thể làm pháo hoa như kiểu pháo dây. Công thức pha chế nhu sau:

- Lửa màu xanh lá cây:
$55 \% \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+20 \% \mathrm{KNO}_{3}+15 \% \mathrm{~S}+5 \% \mathrm{Mg}+5 \% \mathrm{C}$
- Lửa dỏ:
$55 \% \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+20 \% \mathrm{KNO}_{3}+15 \% \mathrm{~S}+5 \% \mathrm{Mg}+5 \% \mathrm{C}$
- Lửa vàng:

$$
60 \% \mathrm{NaNO}_{3}+15 \% \mathrm{~S}+10 \% \mathrm{PbS}+15 \% \mathrm{C}
$$

- Lửa tím:
$50 \% \mathrm{KNO}_{3}+15 \% \mathrm{KClO}_{3}+15 \% \mathrm{~K}_{2} \mathrm{CO}_{3}+15 \%$ phèn nhôm $+5 \% \mathrm{C}$.
Nếu có điều kiện cho thêm mối công thức $2-5 \%$ SbS thil pháo cháy tớt hon.

101- Pháo sáng

Công thức pha chê:
$32 \% \mathrm{Mg}+13 \% \mathrm{Al}$ (bột) $+50 \% \mathrm{KNO}_{3}+5 \%$ chất kết dính.
Chất kết dính có thể dùng: cánh kiến, dằu lanh hay có thể
dùng 1 quả bóng bàn vỡ ngâm vào 100 ml axeton cho tan hoàn toàn, rồi lấy lượng dung dịch này theo ti lệ của khới lượng hỗn hợp mà trộn vào thuốc cháy.

Các hơa chất cần phải khô và nghiền mịn rồi trộn với nhau cho đêuu. Cho hỗn hợp vào một ống kin loại dài 25 cm và đường kính khoảng 3 cm . Hai đầu ống kim loại để hở. Cắm vào hai đầu ơng thuốc hai ngòi có thuốc dẫn cháy.

Treo ống kim loại lên một dây thép, châm lửa đốt cháy ngòi, sẽ cháy sáng trắng rất đẹp và lâu mỡi tắt.

Ng ì dẫn cháy gồm $50 \% \mathrm{KNO}_{3}+30 \% \mathrm{Mg}+10 \% \mathrm{~S}+10 \% \mathrm{C}$.

102. Pháo dây nhì̀̀u màu (phåo hoa)

Với một số hơa chất, chúng ta co thể làm những chiếc pháo dây rắt nhiều màu sấc.

Thành phần chính để cuốn pháo dây là kali clorat KClO_{3}, thêm vào đó một vài chất dễ cháy: đường bột hoặc than bột, liễu lượng như sau:

$$
5 g \mathrm{KClO}_{3}+2 g \text { đường bột hoạ̣c than bột. }
$$

Muớn ngọn lửa có màu vàng đẹp, thêm 1 g lưu huỳnh và $1,5 \mathrm{~g}$ natri oxalat; muốn màu xanh lá cây, thêm $2,5 \mathrm{~g}$ bari cacbonat và $1 g$ đồng cacbonat; muốn màu xanh da trời, thêm $1,5 g$ lưu huỳnh và $2 g$ đồng cabonat; muốn màu tím, thêm $2 g$ phèn nhôm - kali; muốn màu đỏ, thêm $2 g$ stronti nitrat.

Néu treo những dây khác màu trên cây vào giữa lúc giao thừa mà đớt cùng một lúc thì vô cùng đẹp mắt.

Nếu trộn cả bấy nhiều màu vào cùng một dây mà đốt thì sẽ có những tia lửa muôn màu rực rỡ.

103- Phão hoa từ miệng ofng nghiệm

Trộn nửa thìa kali pemanganat KMnO_{4} và cũng chừng ấy than gỗ nghiền nhỏ.

Dổ cả hỗn hợp ấy vào một ống nghiệm, kẹp chặt và đớt nóng. Một lúc sau, từ miệng óng nghiệm sê bấn ra một bó những tia lửa sáng rực như chùm hoa.

Giài thich: Khi đun nóng KMnO_{4} bị phân tích giải phóng ra oxi:

$$
2 \mathrm{KMnO}_{4}=\mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2} \uparrow
$$

Oxi được giải phơng sẽ "đốt cháy" các hạt than rất nhỏ đã được nung nơng. Khí oxi thoát ra từ trong hốn hợp làm bắn tung các hạt than dang cháy lên.

104- Pháo hoa trễn mạt bản

Nghiền nhỏ đường kính và KClO_{3} riêng từng thứ một rồi trộn cẩn thận trên một tờ giấy theo til lệ bàng nhau về khới lượng để được 5.8 g hốn hợp (chú ý: không được nghiền chung hai thứ với nhau vì có thể nổ).

Chia hỗn hợp thành bốn phần bằng nhau rồi lần lự̛̣t trộn thêm vào phần thú nhất: muối NaCl , phần thư hai: muối KCl , phần thú ba: muối $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ và phần thú tu: muối CuCl_{2}. Đổ các hốn họ̣p trên thành từng đống hình nón cách nhau khoảng 20 cm trên một miếng sát tây rồi để trên mặt bàn.

Lấy ớng nhỏ giọt để nhỏ $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đặc vào các hỗn hợp trên, chúng sẽ bùng cháy, cho các ngọn lửa có màu sắc rực rỡ, vàng, tím, đỏ gạch, xanh lá cây đẹp như đót pháo hoa vậy.

Giải thích: Axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ tác dụng với KClO_{3} theo phương trình phản ứng sau:

$$
4 \mathrm{KClO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{~K}_{2} \mathrm{SO}_{4}+4 \mathrm{ClO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \uparrow
$$

Phản ứng tạo ra ClO_{2} là một chất khí màu vàng nâu, có tính oxi hơa rắt mạnh. Nó oxi hóa đường là một họ̣p chất hữu cơ làm cho đường bùng cháy.

Màu của ngọn lửa là do các ion kim loại chứa trong các muối khi ta trộn thêm vào tạo nên. Ngọn lửa có Na^{+}- màu vàng; K^{+}màu tím; Ca^{++}- màu đỏ gach; Cu^{++}- màu xanh lá cây.

105. Pin but chi

Pin này cũng theo nguyên tác chế tạo như chiếc pin thương dùng.

Chẻ chiếc bút chì để lấy lơi và tháo một chiếc pin hỏng dể lấy MnO_{2}. Nghiền MnO_{2} thành bột thêm một chất keo và phả oxit này quanh lỗi chì. Tiếp đó dùng giá́y "bạc" bọc lại sao cho lớp mặt của giấy "bạc" tiếp xúc với MnO_{2}. Có thể quấn vài lớp và cuới cùng dán lại cho chặt. Chú ý: khống bọc hết lōi chì mà một đằu để hở 1 cm . Lấy dây trần quấn chặt vào hai cực, ta sẽ có một chiếc pin.

Để chứng tỏ có dòng điện, ta nhỏ vài giọt phenolphtalein vào dung dịch nước muối, nhúng dây dẫn nối hai cực của pin vào nước muối màu hồng sê xuất hiện dòng điện vì dung dịch NaCl bị điện phân tạo ra OH^{-}tại cực âm.

106. Trong khooi thuốc lá có những chát gì?

Chuẩn bị một bình thủy tinh, một bơm nước hút chân không, những ớng nối và một đoạn thủy tinh có phình ra ở giữa (kiẻu ống làm khô) chứa CaCl_{2}. Dạ̣t vào ớng này một miếng bông và
lắp như hình vẽ. Láp vào một đầu ống, qua nút cao su điếu thuóc lá đang cháy và mở bơm nước để hút khơi. Bạn hãy cho bình thủy tinh "hút" $2-3$ diếu như vậy. Miếng bông sẽ có màu vàng nâu và có mùi rất khó chịu.

Dùng kẹp gáp miếng bông ra, đặt vào ống nghiệm và đổ thêm $2-3 m l$ ete. Lắc ki và ép miếng bông. Miếng bông sẽ trắng trở lại và dung dịch có màu đỏ. Để ống nghiệm vào chỗ ấm. Ete bay hơi, còn lại một chất lỏng nhớt, màu nâu sẫm.

Chất lỏng nhớt ấy gồm những gì? Ngườ ta đã phát hiện trong đó có chứa tới 1.200 . chất. Hầu như tất cả các chất hữu co đều có mặt: hiđrocacbon no và không no, vòng thơm và vòng thường, stearin, rượu, ete, anđehit, xeton, quinon, nitrin, hợp chất của lưu huỳnh, axit, phenol, ancaloit (nicotin và dẫn xuất), các hợp chất vô cơ của asen, đồng, sắt, thiếc, mangan, niken, poloni (cả loại phớng xạ Po-210), titan, kẽm, NH_{3}. Trong thuốc lá cuộn, ngoài các chất trên còn có thêm oxit cacbon, oxit nito, axit xianhiđđic... Quả là một bảng kê khá đầy đủ các hóa chất độc hại.

107. Vị của các chất ra sao?

Thường nơi đ̛ến muối ai cunng nghỉ là mặn. Nhưng không phải muối nào cũng mặn. Muối có vị mặn điển hình là $\mathrm{LiCl}, \mathrm{NaCl}$,
$\mathrm{RbCl}, \mathrm{AlCl}_{3}, \mathrm{NaBr}, \mathrm{AlBr}_{3}, \mathrm{LiI}, \mathrm{NaI}, \mathrm{NaNO}_{3}, \mathrm{KNO}_{3}$ cũng như $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Có vị đắng: $\mathrm{CsCl}, \mathrm{KI}, \mathrm{RbI}, \mathrm{CsI}, \mathrm{MgSO}_{4}$.
Vừa mặn vừa chát: $\mathrm{KBr}, \mathrm{AlI}_{3}$.
Rất ngọt và độc: $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}, \mathrm{Be}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
Một số chất có vị không thống nhất theo cảm nhận của từng người. Nhiều chất cớ "vị kép". Những hợp chất chứa nhóm - NH-C $=S$ thuộc loại này. Chả̉ng hạn phenylthioure đói với 20% số người là chả̉ng có vị gì, nhưng 80% lại cho là rất đáng. Một số người có khả năng dùng vị giác để phát hiện sự có mặt của phenylthioure trong nước khi nồng độ dưới một phần mười triệu phân. tư gam/lit (10^{-7} molll), nhưng nhiều ngữ̀i không thể nhận ra nó khi nồng độ cao hơn đến 25 vạn (250.000) lần. Ngoài ra, một só chất như creatin, manoza, benzoat natri... lại có nhiều vị khác nhau tùy theo lưỡi của từng người.

Chảng hạn cơ người cho benzoat natri là ngọt, người bảo rà̀ng chua, người thấy đắng, người quả quyết là mặn, người lại khăng khăng là chẳng có mùi vị gl.

Trong những tập giáo trình vê hóa học thuộc thế kì trước mô tả mùi, vị của một chất hình như là một điéu bá́t buộc. Nhà hơa học luôn luôn phải dùng lưỡi của mình để nếm các chất điều chế ra. Người ta cho rằng cái chết đột ngột của nhà hóa học Thụy Điển vĩ đại Scheele chính là do nguyên nhân này: ông bị đầu độc khi xác định vị của axit xianhiđđric khan mà ông là người đầu tiên điều chế được.

108- Khắc lên sất, thép

Muớn khắc hình vẽ hoạc chữ lên sắt, thép - thí dụ lưỡi dao, bạn chỉ việc dùng giấy ráp đánh sạch lớp gỉ rồi tráng lên lưỡi dao một lớp parafin (hơ nơng lưỡi dao rời đặt lên trên một mẩu parafin,
nớ sẽ nóng chảy và phủ kín lưỡi dao). Lấy dùi hoạac đinh vẽ hay viết chữ sao cho thủng ló́p parafin đến lưōi dao. Sau dó ngâm lưỡi dao vào dung dịch iot trong KI khoảng 30phút. Lấy lưỡi dao ra cạo sạch lớp parafin, bạn sẽ thấy rõ hình vẽ hoạ̣c chữ viết khăc lên dao.

Giải thich: Iot tác dụng với sát tạo ra sát (II) iodua FeI_{2}.
Chú ý: Nếu không có iot để làm thí nghiệm trên, có thể điều chế như sau: cho vào cốc thủy tinh một hốn hợp gồm 2 phần khối lượng muối KI khô và 1 phằn MnO_{2}, sau đó thêm axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ và đun nóng hỗn hợp. Đặt một bình cầu đựng nước lạnh lên miệng cớc để ngưng tụ hơi iot. Các tinh thể iot xuắt hiện sê bám ơ đáy bình cầu.

109- Mực viết lên thùy tinh

Trong phòng thí nghiệm hóa học nếu có loại mực có thể viết lên chai lọ thì rất tiện không phải làm nhãn bằng giấy vừa mất nhiều thời gian lại mau hỏng.

Dưới đây là một số cồng thức pha chế mực có thể viết trên thủy tinh khá bền.

1. Muc tráng: Nghiền thật kĩ 20 g cao lanh thật tráng và 80 g thủy tinh lỏng (natri silicat) trong cới sứ. Hồn hợp dựng trong bình thủy tinh và khuấy đảo đều trước mối khi sử dụng. Dùng bút thép nhưng vào mực để viết lên thủy tinh.
2. Mưc den: Điều chế hốn họp gồm 20 g than gố, 20 g mực in có màu đen và 60 g thủy tinh lỏng, khuấy trộn thật kỉ và lọc qua ráy lố nhỏ. Viết lên thủy tinh cūng giống như mực tráng.
3. Mưc ăn mòn: Điều ché riêng hai dung dịch. Dung dịch thứ nhá̛t gồm 8 g NaF ; dung dịch thứ hai $0,7 \mathrm{gK}_{2} \mathrm{SO}_{4} ; 3,5 \mathrm{ml}$ nước cất.

Trước khi dùng lấy từ hai dung dịch này những thể tích bà̀ng nhau, khuấy đều và vừa đổ dẳn từng phần nhỏ một, vừa lác dung
dịch thứ hai vào dung dịch thứ nhất. Dùng que bà̀ng gỗ hoạc chất dẻo viết mực lên thủy tinh và nửa giờ sau lại rửa lại bả̉ng nước. Axit HF hình thành trong dung dịch sẽ ăn mòn thủy tinh và đé lại những vết rất rō.

Chú \mathfrak{y} : Phải deo găng tay khi làm việc.

110. Thu hò̀ hóa chát thài

Khi điều chế khí CO_{2} tù bình kíp, dung dịch $\mathrm{CaCl}_{2} \sinh$ ra sau phản ứng thường bị đổ đi. Nhưng chính CaCl_{2} lại là một hóa chất rất cần thiết của phòng thí nghiệm. Chả̉ng hạn để làm khan các chất hữu co. Cách thu hồi như sau:

Dở 1 lung dịch đã xử lí trong bình kíp vào một cốc thủy tinh lớn, thêm vào đó 30 ml nước oxi già $-\mathrm{H}_{2} \mathrm{O}_{2}$ đã pha loãng thành 3%. Dun sôi khoảng 10 phút (để oxi hóa Fe^{2+} thành Fe^{3+}) để nguội đến $50-60^{\circ} \mathrm{C}$ và cho thêm 40 g vôi bột. Dun 20phút nữa (dung dịch phải có tính kiềm mạnh) lúc dó sē tạo thành các hợp chất không tan của sất, magie, stronti (chứa trong đá vôi ban đầu).

Lọc dung dịch còn nóng qua bông thủy tinh (không nên dùng giấy lọc vì môi trường kiềm dễ bị mủn). Nước bọt chứa CaCl_{2} và một ít $\mathrm{Ca}(\mathrm{OH})_{2}$ (cớ lẫn cả NaCl và KCl) được axit hớa bằng axit HCl và cô cạn cho đến khi thể tích còn bằng $1 / 3$ thể tích ban đầu. Phằn bã khô là CaCl_{2} có lẫn cả NaCl và KCl .

Nếu dùng sản phẩm này để điều chế các muối khác ta cần chuyển nó sang dạng cacbonat để tách khỏi các tạp chất của natri và kali. Còn muốn dùng nó để làm khan các dung môi hữu cơ thì phài nung nó trong lò nung ở $600^{\circ} \mathrm{C}$ trong 2 giò.

111- Diều chế phèn nhôm tù đất sét hoạc cao lanh

Khi cần một lượng nhỏ phèn nhôm để làm sạch nước hoạc để điều chế thử sunfat nhôm trong phòng thí nghiệm nhà trường có thể dùng một chút $\mathrm{H}_{2} \mathrm{SO}_{4}$ và đất sét. Đất sét và cao lanh chứa nhôm dưới dạng caolinit $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ rất phố biến trong thiên nhiên, lượng $\mathrm{Al}_{2} \mathrm{O}_{3}$ trong đó từ 20-40\%.

Khi dùng để làm phèn, sản phẩm thường là $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ chưa các tạp chất sát và các nguyên tố khác.

Dất sét và cao lanh khác nhau về thành phần khoáng và thành phần hơa học cūng như về độ phân tán. Thường đất sét gồm những hạt nhỏ hơn cao lanh.

Để điều chế phèn nhôm, đầu tiên nung đất sét hoạ̣c cao lanh trên $400-500^{\circ} \mathrm{C}$ để loại trừ hết nước kết tinh và đốt cháy hết các chất hữu cơ.

Sau đó, trộn $80-100 \mathrm{~g}$ đất sét hoạ̣c cao lanh đã nung với axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ (khoảng $2 \mathrm{ml}, d=1,84$) trong bát sứ.

Quá trình phân hủy xảy ra (nên làm ngoài trời khi đun cách cát hoạ̣c đun với ngọn lửa nhỏi và khuấy liên tục cho tới khi khí ngừng tách ra và khới phản ứng tới xốp. Phản ứng xảy ra như sau:

$$
\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SiO}_{2}
$$

Để nguội đến nhiệt độ phòng. Thêm khoảng 200 ml nước và đun sôi. Sau đó lọc lấy nước trong. Cô cạn tới khi xuất hiện lợp váng. Đẻ̉ nguội và khuấy liên tục, từ dung dịch đậm đặc sẽ tách ra các tinh thể hình kim hoặc dạng tinh thể khác cùa $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ màu sáng hoặc hơi xanh. Màu của phèn phụ thuộc các tạp chất của sất, tạp chất khác có trong nguyên liệu ban đầu. Lọc lấy các tinh thể này và để khô ngoài không khí. Khi cô cạn
và kết tinh cũng có thể thu được muối nhôm sunfat có hàm lự̂ng nước thấp hơn.

112- Phép màu nhiệm của cạc viên long não

Bạn thả vài viên long não vào một bình thủy tinh chứa chất lóng có màu. Sau vài phút bạn sẽ thấy các viên long não này cứ thi nhau nổi lên rồi lại chìm xuống liên tục như đàn cá phải ngoi lên mặt nước để hớp không khi. Cảnh tự̛̣ng diễn ra thật vui mắt!

Cách làm:

Cho vào bình thủy tinh cỡ lớn 10 g đá vôi $\left(\mathrm{CaCO}_{3}\right) ; 5 \mathrm{~g}$ muố ăn (NaCl); vài giọt phẩm màu và $20 \mathrm{~cm}^{3}$ dung dịch axit HCl đậm đặc. Sau đó đổ thêm nước đến gần đầy bình rồi nhẹ nhàng thả các viên long não vào. Các viên long não sê nhấp nhơ như đàn cá bơi lội tung tăng.

Giải thich: Trong bình xảy ra phản ứng sau:

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl}=\mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Các bọt khí CO_{2} tích tụ lên các viên long não và nâng chúng nổi lên mặt nước, tại đây các viên long não sẽ nhả khí $\mathrm{CO}_{2} \mathrm{ra}$, thǻm nước vào và chìm xuống. Khi tới đáy bình chúng lại hút khi CO_{2} và lại nổi lên.

Pha thêm muói ăn để làm tăng khới lượng riêng của dung dịch, giụp cho các viên long não dẽ̃ nởi lên hơn, phấm màu làm cho dung dịch có màu sẽ đẹp mắt và hấp dẫn hơn.

Trong thỉ nghiệm này nếu ta dập các viên long não có hình con cá thì càng vui mát.

113- Màu do hóa thanh màu vàng nhưng chất không thay đổi

Đun nóng một chất màu đỏ nó hơa thành màu vàng. Để nguội nó lại trở về màu đỏ nhưng chất không hề thay đổi. Chất gì mà lạ vậy? Biến hơa gì mà lạ vậy?

Chất đó là thủy ngân iơua HgI_{2}. Biến hóa đó là biến hóa thù hình.

$$
\mathrm{HgI}_{2} \frac{\text { nung nóng }}{\text { làm nguội }} \mathrm{HgI}_{2}
$$

màu dó màu vàng

Khi bị nung nóng HgI_{2} màu đỏ chuyển thành màu vàng. $\mathrm{Sự}$ biến hơa đó là sự biến hóa thù hình: nó chì thay đổi dạng tinh thể của họ̣p chất, trong khi đó thành phần hóa học của hợp chắt không thay đởi.

114- Lam thay tỗi màn būc ki hoa

Dùng giấy quỹ tím cất thành những dải nhỏ rồi dán theo nét vẽ của một bức ki họa ta sẽ có một bức kí họa được tạo ra theo kiểu cất dán.

Nhúng bức kí họa màu tím đó vào dung dịch axit nó sẽ biến thành màu đỏ nhạt, lấy ra nhúng vào dung dịch kiềm nó lại biến thành màu xanh.

115- Khắc chũ vẽ hỉnh trên kǐnh

Có thể khắc chữ, vẽ hình trên kính bà̀ng hai cách:

1. Trước hết phải phủ kín mặt kính một lớp sấp ong mỏng bằng cách: đun cách thủy cho sáp ong nơng chảy hoạac thay bà̀ng hỗn hợp gồm 5 phần sáp ong và 1 phằn dầu lạc hoạc dầu thông. Dùng bút lông mềm quét một lớp sáp (đã chế biến như trên) lên mặt kính. Dể cho sáp khô, dùng một mũi thép nhọn khác hoặc vẽ lên mặt kính đã phủ sáp. Trên vết khắc hoặc vẽ sáp bị loại ra, thủy tinh lộ ra: khi tiếp xúc với axit HF sẽ bị ăn mòn do các phản ứng:

$$
\mathrm{SiO}_{2}+4 \mathrm{HF}=\mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

(SiO_{2} có trong thành phần của thủy tinh)

Dùng que tre bọc lông ở đầu, thấm uớt dung dịch HF rồi bôi lên vết khắc. Phủ lên mặt kính một miếng vải nhựa PE để HF đở bay hoi. Để yên 5 giờ. Loại sáp trên mặt kính bằng tinh dầu thông rồi rửa bà̀ng xà phòng.
2. Thay HF bầng bột nhão gồm hỡn hợp CaF_{2} và $\mathrm{H}_{2} \mathrm{SO}_{4}$. Có phản ứng xảy ra từ tù̀.

$$
\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{HF}+\mathrm{CaSO}_{4}
$$

(1 phần) (2 phần)

Cũng phủ một lớp sáp trên mặt kính như trên. Sau khi khắc, vẽ, quét một lớp bột nhão lên nét vẽ (bàng que sắt nhọn). Dùng một bát nhựa dậy lên mặt kính.

Sau 5 giờ rửa sạch sáp như trên.
Chú ý: HF là một axit yếu nhựng rất độc, ãn mòn thủy tinh nên thường đựng trong lọ nhựa kín. Khi làm phải cẩn thận.

116- Nhũng điều fí thú về nức

Nước: Hợp chất tạo bởi hai nguyên tố hiđro và oxi (phần trăm về khối lự̛̣ng hiđro: $11,11 \%$; oxi: $88,89 \%$) là họ̣p chất thuộc loại oxit. Trong cấu tạo phân tử: hai nguyên tử hiđ̛o ở cùng một phía đối với nguyên tử oxi, nên phân tử nước phân cực mạnh.

Ò trạng thái lòng, phân tử nước thường liên hợp với nhau bầng liên kết hiđ̛o có công thức chung $\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{x}^{*}}$ Quá trình này được biểu diễn trên sơ đồ sau:

$$
x \mathrm{H}_{2} \mathrm{O}=\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{x}}+Q(x \text { thay đổi theo nhiệt độ }) \text {. }
$$

Ở trạng thái rán mỗi phân tử liên hợp với 4 phân tử khác tạo nên những tập hợp $\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ có cấu tạo hình tứ diện đều. Ò nhiệt độ $0,01^{\circ} \mathrm{C}$ và áp suất $0,006 \mathrm{~atm}$, nước tồn tại đồng thời ở ba trạng thái: rán, lỏng, hơi. Khối lượng của nước ở $4^{\circ} \mathrm{C}$ là lớn nhất: khối lượng $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ ở $4^{\circ} \mathrm{C}$ bằng đúng 1 g nên nước được chọn để xác định tỉ khới của các chất rấn và lỏng. Nhiệt dung của nước là lớn nhất so với các chất khác: nhiệt lượng cần để đun $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ từ $14,5 \cdot 15,5^{\circ} \mathrm{C}$ được dùng làm đơn vị nhiệt, gọi
là calo. Do nhiệt dung lớn nên nước có tác dụng điều hòa nhiệt độ trên bề mặt trái đất để nhiệt độ không xuống quá thấp vè mùa đông và không lên quá cao về mùa hè.

Dựa vào nhiệt độ nóng chảy $0^{\circ} \mathrm{C}$ và nhiệt độ sôi $100^{\circ} \mathrm{C}$ của nước (ở áp suất thường) đé̉ xây dựng thang nhiệt độ bách phân Celsius (viết tắt là $0^{\circ} \mathrm{C}$). Khới lượng riêng của nước giảm khi hạ nhiệt độ xuống dưới $4^{\circ} \mathrm{C}$, vì vậy băng nhẹ hơn nước lỏng và nổi trên mặt nước lỏng. Vê mùa đông ở các miền băng giá ở hồ, sông, biển phía dưới nước không bị đơng bāng nên cá, các sinh vật khác vẫn sống được.

Sức căng bề mặt của nước cūng lớn (chỉ kém thủy ngân) và bàng $72,7 \mathrm{ec} / \mathrm{cm}^{2}$ ờ $20^{\circ} \mathrm{C}$, bề mặt của nước như tạo thành một màng đàn hồi. Để phá va̛ lớp bê mạt này cần tác động một lực. Vi vậy mà côn trùng (họ thủy mẫn...) có thể đi, chạy trên mặt nước như đi chạy trên bề mặt một chất rán. Một số vật có tỉ khới lớn hơn nước như (kim, dao lam...) có thể giữ được trên mạ̣t nước mà không bị chìm. Cūng vi sức căng của bề mặt nên giọt nước khi rơi tự do hay trong trạng thái kbông trọng lượng có dạng hình cầu (dạng hình học có diện tích bề mặt nhỏ nhất của một thể tích xác định). Nước là hợp chất bền vững, ơ $1000^{\circ} \mathrm{C}$ có thể bị phân hủy:

$$
2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

nhưng đến $2000^{\circ} \mathrm{C}$ hiệu suất phân hủy cững chỉ khoảng $1,8 \%$; mãi tới $5000^{\circ} \mathrm{C}$ mới phân hủy gần như hoàn toàn. Nước là dung môi phổ biến, nơ hòa tan nhiều chất rấn, lỏng và khi. Nước là chất phản ứng diệ́u kì. Nó phản ứng với nhiều nguyên tố, nhiều oxit, nhiều muối. Nó tham gia nhiều phản ứng hóa học với những tính chất khác nhau (thủy phân, hiđ̛at hơa...) Nước là một trong những chất xúc tác phớ biên. Sau đây là một số thí dụ:

$$
\begin{aligned}
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} & =2 \mathrm{NaOH}+\mathrm{H}_{2} \\
4 \mathrm{~F}+2 \mathrm{H}_{2} \mathrm{O} & =4 \mathrm{HF}+\mathrm{O}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} & =\mathrm{Ca}(\mathrm{OH})_{2} \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} & =\mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O} & =\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OSO}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} & =\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \\
6 n \mathrm{CO}_{2}+5 n \mathrm{H}_{2} \mathrm{O} & =\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{n}+3 n \mathrm{O}_{2} \\
2 \mathrm{Al}+3 \mathrm{I}_{2} & \stackrel{\mathrm{H}_{2} \mathrm{O}^{2}}{=} 2 \mathrm{AlI}_{3}
\end{aligned}
$$

Nước tinh khiết được coi là môi trường trung tính với
$\left(\mathrm{H}^{+}\right)=\left(\mathrm{OH}^{-}\right)=10^{-7} \mathrm{~mol} / \mathrm{l}$. Tích của hai nồng độ này gọi là tích số ion của nước luôn là một hà̀ng số:

$$
\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
$$

Từ đây xây dựng thang $p H$ để xác định môi trường axit, bazo hay trung tính của dung dịch.

Nước có vai trò như một axit:

$$
\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{H}^{+} \text {(cặp axit-bazơ liên hợp } \mathrm{H}_{2} \mathrm{O} / \mathrm{OH} \text {) }
$$

Thi dụ: $\quad \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}=\mathrm{OH}^{-}+\mathrm{NH}_{4}{ }^{+}$
Nước có vai trò như một bazo:
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$(cạap axit-bazơ liên hợp $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}$)
Thi dụ: $\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
Nước vừa có tính chất oxi hơa:
$2 \mathrm{H}_{2} \mathrm{O}+2 e=\mathrm{H}_{2}+2 \mathrm{OH}^{-}$(cặp oxi hóa khử: $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2}$), thí dụ:

$$
2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}=2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \uparrow ;
$$

và có tính khử: $6 \mathrm{H}_{2} \mathrm{O}-4 e=4 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{O}_{2}$ (cạ̣p oxi hơa-khử: $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$), thi du: $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~F}_{2}=4 \mathrm{H}^{+}+4 \mathrm{~F}+\mathrm{O}_{2} \uparrow$.

Nước là hợp chất rất phổ biến. Khối lượng nước có trong tự nhiên khoảng 2.10^{18} tấn, phần lớn ở các đại dương, hồ, sông... Nước có ở mọi nơi và chiếm một lượng lớn trong cơ thể động, thực vật. Nước có vai trò cực kì quan trọng trong đời sống và
trong kĩ thuật. Nước ở các mạch nước ngà̀m và nhất là ở đại dương có chứa những lượng lớn nhiều nguyên tố, là nguồn nguyên liệu của công nghiệp hơa học. Nước nguồn năng lượng vô tận đự̛̣c mệnh danh là than tráng. Ngoài nước thường ($\mathrm{H}_{2} \mathrm{O}$) người ta còn biết những hợp chất khác cùng tạo bởi hidro và oxi như $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{H}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}_{4}$ trong đó hợp chất quan trọng nhắt là $\mathrm{H}_{2} \mathrm{O}$. Bên cạnh đó còn có loại nước do các dồng vị của hidro tạo ra như $\mathrm{D}_{2} \mathrm{O}$, $\mathrm{T}_{2} \mathrm{O}$ là nước nặng và siêu nặng. Nước là hợp chất rất bình thường nhưng lại khác thương về tính chất. Nó là chá̛t duy nhất trên địa cầu gặp đồng thời với khối lượng lớn ở cả ba trạng thái: rắn, lỏng và houi.

117- Dánh bơng dồ bạc

Bạc thường được dùng làm đồ trang sức. Ngoài tác dụng trên, chúng cũng gơp một phần nào bảo vệ sức khỏe con người bời vì bạc cơ tác dụng khử trùng và tránh cảm. Ó vùng cao, noi nhiều gió lạnh sương sa, người ta rất hay đeo vòng bạc. Tuy nhiên sau khi deo một thời gian, bạc có thể bị xỉn. Dưới đây là các công thức giúp bạn đánh bóng bạc cín sáng lại:

1. Bột dánh bóng:

Trộn ki $64 g$ canxi cacbonat $\left(\mathrm{CaCO}_{3}\right), 32 \mathrm{~g}$ phèn chua, 64 g axit monokalitactrat ($\mathrm{COOH}-\mathrm{CHOH}-\mathrm{CHOH}-\mathrm{COOK}$) và một it cồn rồi bôi lên bề mặt đồ trang sức. Sau đó dùng vải mềm xoa đều đến khi ánh bạc sáng lên thì thơi.

2. Dung dịch dánh bóng:

Hòa 30 g axit monokalitactrat, 30 g muối ăn, 30 g phèn chua và 1500 ml nước. Dun sôi dung dịch trên rồi bỏ đồ bạc vào đun tiếp tới khi thấy nó sãng bóng trở lại thì vớt ra và lau khô.

118- Diè̀u ché dung dịch, giũ hoa tưoi lâu

Sử dụng it nhất hai trong ba chất dưới đây:
1- Axit α-aminoisobutiric hay muối của nố.
2- Axit aminooxiaxetic hay muối của nó.
3- Bac-thiosunfat.
Pha với nước tạo nên một dung dịch nuôi hoa đã cắt. Nhờ dung dịch này, hoa tươi lâu được 16 ngày.

119- Chiếc lá tî̀nh cảm

Bạn đã bao giờ trao và nhận được một chiéc lá "diêu bông" với dòng chư "I love you" chưa? Néu như người ta bảo lá diêu bông chil là tưởng tượng; chữ trên lá càng "siêu thực" thì bạn đừng vội thất vọng, vil hớa học giúp bạn có được chiếc lá đó. Ngườri ta thường nơi "trơ như đá, vững như đờng", vậy bạn tạo chiếc lá diêu bông bảng gì để chứng tỏ tình cảm sâu sác và bền vững của mỉnh? Hãy chọn nguyên liệu cho lá là đồng đi.

Với vài nguyên liệu, dụng cụ dễ kiếm, với nguyên tác của kỉ thuật mạ điện trong tay và tình cảm của bạn, chấc chán bạn sẽ̃ có chiếc lá diếu bông như ý, cho mỉnh và cho người.

Nguyên tác mạ diện

Khi cho dòng điện một chiễu qua hai điện cực anot'svà catot nhúng trong dung dịch điện phân chứa các ion kim loại, thì các ion kim loại đó sẽ chuyển tới catot và bám vào bề mặt catot tạo thành một màng tinh thể đồng đều, chắc. Nếu catot làm bằng kim loại thì kim loại này được "mạ" bởi kim loại trong dung dịch điện phân thành lớp mỏng hay dày tùy theo thời gian mạ, nờng độ cùng bản chất ion kim loại trong dung dịch và cường độ dòng điện. Nếu catot bàng parafin hay graphit (diện cực trơ) thì lớp
phủ này có thẻ̉ tách dễ dàng khỏi bề mặt catot khi ngừng diện phân.

Chuẩn bị

- Dung dịch điện phân:
$100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
$20 \mathrm{~g} \mathrm{CuSO}_{4}$ tinh the
$2-3 m l$ dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4}$
$2-3$ pin đèn nối song song làm nguồn điện. Dùng biến trở sao cho cường dộ dòng khoảng $5-10 \mathrm{mi}$
- Một miếng sáp hoạac parafin
- Một it dây đồng nhỏ
- Cốc hoặc bình điện phán.

Thuc hiẹn
Miêng parafin mài cho bề mặt thật phẩng, cất thành hình chiếc lá. Trên phần đã mài nhã̃n, vạch chữ hay hoa vãn, hình vẽ... bạn muốn bằng kim (đù̀ng sâu quả). Dùng bút lông mềm phủ lên dòng chữ hay hình vẽ một loại bột dẫn điện, đơn giản nhất là bột từ lõi bút chì nghiền mịn. Áp vào mép của dòng chữ những dây đồng nhỏ (khờng có vỏ cách điện) làm dây dẫn và nối chúng với nhau. Treo khuôn lá có chũ đồng trong bình hay cốc diện phân (bằng thủy tinh) khuôn trở thành catot.

Đổ dung dịch điện phân vào cốc cho ngập hản khuôn. Dùng dây dẫn đồng treo ở hai phía của khuôn hai tấm đồng và cùng nối với nguồn điện dương-hệ thống này trở thành anot.

Nối anot với cực dương: catot với cực âm của nguồn điện và... chờ đợi.

Thời gian điện phân chừng 5giơ hoạc lâu hơn.
Ngát mạch, lấy khuôn ra thật cẩn thận và cho vào nước nóng.

Parafin sẽ chảy ra và trong tay bạn là chiếc lá diêu bông mỏng với dòng chũ "I love you".

Và cuối cùng, chúc bạn có chiếc lá thật đẹp; song chớ tặng nhiều lá diêu bông như thé cho nhiều người.

120. Nến mãu

Mua nến trang trí ngày Tết, lễ hội, sinh nhật... nhiều khi không vừa ý những người cầu kì. Bỏ công ra làm một bộ nến có màu sác cơ hương thơm để tặng bạn bè hoạc thấp trong dịp ki niệm của chính mỉnh thật có ý nghỉa. Và biết đâu, có thẻ phát triển thành một nghề kinh doanh sinh lợi...

Trước hét, bạn hãy chuẩn bị các nguyên liệu và dụng cụ cần thiết.

Nguyên liệu:

- Parafin (mua tại các cửa hàng hơa chất). Nếu khó kiếm, bạn có thể mua loại nến rẻ tiền để "tái chế".
- Bấc nến: Xe sợi bằng vải bông, sợi lanh... đến độ lớn và chiều dài cần thiết. Tránh dùng sợi tổng hợp. Dể nến không cơ tàn, tả̉m nến bằng dung dịch borax hoặc natri photphat. Dung dịch tạo màu cho ngọn lửa cũng tẩm vào bấc.
- Chất màu: Dùng chất màu tan được trong dầu mỡ, parafin như metyl xanh (màu xanh), auramin (màu vàng), rodamin; eosin (màu đỏ)... Cũng có thể dùng phấn hóa trang có så̃n màu.
- Chất tạo màu cho ngọn lửa: các muối vô co hòa tan trong nước.
- Chất thơm: Có thể dùng nước hoa hoạ̣c tinh dầu. Chứ ý: một chất thơm hòa trong parafin khi cháy có thể có mùi khó chịu. Cần thử nhiều loại.

Dung cu:

- Khuôn nến: Các ống kim loại có sã̃n, bình xịt đã dùng, ống chất déo, bao bì... Chả̉ng hạn lọ kẹo bằng nhựa có hình ông già Noël cũng có thể làm khuôn nến bạn muốn nến có hình này. Nếu bạn khéo tay, có thể tự gò từ sất tây những khuôn nến độc đáo theo y thich.
- Chén sứ hoạac kim loại để nấu chảy parafin.
- Kep.
- Nhiẹt kế tới $100^{\circ} \mathrm{C}$.

- Bếp điện, hoạac đèn cồn.

Cách lànı: Vê nguyên tác, làm nền màu (thân nến và màu ngọn lửa) cần những công đoạn sau đây:

- Trộn chất mảu (cho thân nến) và chất thơm vào parafin.
- Chuẩn bị bấc nến: Xe sợi, tẩm dung dịch muối vô co (để tạo màu cho ngọn lửa) và dung dịch borax hoặc natri photphat. Để khô.
- Đặt bấc vào khuón (cần đúng tâm ngọn nến sau này để cháy đều, không bị "vẹt" một phía) cớ định phía dưới và trên của bấc.
- Nấu chảy parafin, đổ khuôn
- Đẽ nguợi và tháo khuôn.

Mọi việc phụ thuộc vào sự khéo tay và sự thành thạo của bạn. Làm thử vài lận trước khi làm hàng loạt.

Cân chư ý những diêm sau dây:

1. Chê đọ đổ khuôn rất quan trọng, cần kiểm tra nhiệt độ bằng nhiệt ké. Parafin nong chảy ở $50-55^{\circ} \mathrm{C}$, nhưng cà̀n đun quá nhiệt độ này. Thường đổ khuôn ơ $60-65^{\circ} \mathrm{C}$. Nếu nhiệt độ thấp hơn, parafin sẽ̃ cứng lại nhanh và bề mặt nến không nhã̃n. Nếu nhiệt độ cao hơn, độ nhớt của parafin thấp làm nó dễ chảy qua các khe hở của khuôn. Để tránh điều này, bạn có thể đun gián tiếp trên bếp cách thủy.
2. Khi đông cứng, thể tích của parafin giảm đi, phía trên hoạ̣c dưới sẽ bị lõm vào. Lúc đó bạn có thể đổ thêm parafin nóng.
3. Bạn cớ thể làm một cây nến có nhiều màu khác nhau (mõ̃i doạn một màu) bà̀ng cách lần lượt đổ parafin đã trộn màu. Như vậy, đoạn đổ sau cần có nhiệt độ cao hơn đoạn trước.
4. Nếu khơ lấy nến ra khỏi khuôn, thậm chí khi đã làm thật lạnh, hãy nhúng vào nước ẩm và tháo ngay khuôn.
5. Nến to chỉ cháy hết ở giữa, xung quanh ngọn nến không kịp chảy. Những ngọn nến như vậy sẽ rất đẹp.
6. Có thể làm sạch bề mặt khuôn bà̀ng nước nóng.
7. Có thể trộn nhiều màu thành nến vân rất đẹp. Song chú ý trộn chất màu với chất màu; phấn màu với phấn màu. Nếu không khi parafin đông cứng sẽ có bọt.

Thi dụ cụ thể:

- Nếu xanh da tròi: Màu nến dùng đồng stearat. Chất này thu được bằng cách trộn dung dịch đồng sunfat với xà phòng nóng chảy. Bấc nến tẩm chính đồng sunfat.
- Nến xanh lá cây: Màu nến dùng oxit crom (II). Chất này thu được bà̀ng cách phân húy nhiệt amoni bicromat hoặc nung nóng natri bicromat với lưu huỳnh. Màu ngọn lửa cũng xanh lá cây do ion Cr^{+3}.
- Nển vàng: Dùng natri cromat làm màu cho thân nến. Ngọn lửa cung vàng nhờ ion $\mathbf{N a}^{+}$
- Nến dó: Có thể dùng bất cứ chất nhuộm nào màu dỏ (cũng có thể dùng bột màu đỏ vô cơ). Còn màu ngọn lửa (đỏ) thu được khi tẩm bấc bàng muối stronti.

121. Mực và bút viết trên thùy tinh, đồ sú

Nhiêuu vật liệu trong xây dựng bằng thủy tinh và sứ cần đánh dấu để cho việc thi công được dễ dàng nên cần có loại "mực" hoạ̣c bút thích hợp, vừa thuận tiện lại rẻ tiền. Dưới đây là mấy công thức ứng dụng:

Các loại mưc:
a) Mực nho (mực tẩu hay muội đèn) 1 phần

- Natri silicat (thủy tinh lỏng) 2 phần
b) Bari sunfat 1 phần
- Natri silicat 3 phăn
- Chất màu tùy \mathfrak{y}, vừa đủ
c) Hàn the (borax) 1 phần
- Cánh kiến 2 phän
- Nước 12 phần

Đầu tiên đun nước cho nóng lên, cho hàn the, sau cho cánh kiến. Dể nguội cho một vài giọt focmalin, mực này cần cho thêm các sác tố (chất màu) trong hoàn cánh thich hợp.

Chất màu:

$$
\text { Den }=\text { muội dèn } 5 g+\text { alcali xanh } 8 g
$$

Xanh $=$ alcali $\times a n h$
Đỏ $=$ cacmanh đỏ
Vàng: auramin hoạc orange II
Bút sáp viết trên kinh và dồ súu

- Sáp spermaxeti 4 phàn
- Mơ bò 3 phàn
- Sáp ong 2 phà̀n
- Oxit chì dỏ 6 phần
- Kali cacbonat 1phän

Đun nhẹ cho sáp + mỡ bò + sáp ong nóng chảy, cho dằn kali cacbonat cùng với oxit chì đỏ vào, khuấy đều trong khoảng $30 p h u ́ t ~ k h i ~ g a ̂ ̀ n ~ n g u o ̣ ̂ i ~ đ o ̛ ̉ ~ v a ̀ o ~ c a ́ c ~ o ̂ ́ n g ~ g i a ̂ ́ y ~ " n h u ̛ ~ đ i e ̂ ́ u ~ t h u o ̂ ́ c ~ l a ́ " . ~$ Khi dùng thì bóc làn giấy bọc ra.

Sáp spermaxeti có tỉ trọng 0,945 , nhiệt độ nóng chảy $42-50^{\circ} \mathrm{C}$, nó là một este của axit panmitic và xetylancol $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{COOC}_{15} \mathrm{H}_{31}$
có thể thay thế bằng sáp cám. (Sáp trong công nghệ ép dảu cám) hoạ̣c parafin có đọ nóng chảy thắp.

122 - Hiện tưqng "ma troi"

Người ta thường kể ràng vào những đêm mưa gió tối trời, ở nghia địa thường có những vòng sáng lập lòe, mờ âo, lúc hiện lúc ẩn gọi là "ma trơi".

Ta có thể tạo ra hiện tượng đó trong thí nghiệm sau đây:
Láy một chậu thủy tinh đựng đầy nước rời ném vào đó vài mẩu canxi photphua $\mathrm{Ca}_{3} \mathrm{P}_{2}$

Những bong bóng khí sẽ xuất hiện, khi thoát lên mặt nước chúng sê cháy tạo ra những vòng sáng lập lòe và để lại những vòng khói tráng.

Giải thích: $\mathrm{Ca}_{3} \mathrm{P}_{\boldsymbol{Y}}$ tàg: dụng với $\mathrm{H}_{2} \mathrm{O}$ theo phản ứng:

$$
\mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{PH}_{3} \uparrow
$$

Khí photphua hidro PH_{3} thoát lên mạ̣t nước gạ̣p không khí nó sẽ tự bốc cháy.

$$
2 \mathrm{PH}_{3}+4 \mathrm{O}_{2}=\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O}
$$

Khơi tráng là những hạt chất rắn $\mathrm{P}_{2} \mathrm{O}_{5}$ rất nhỏ. Nên biểu diễn thí nghiệm vào buỡi tới sê nhìn rõ ánh sáng lập lòe.

Ò các nghĩa địa, xác người chết khi phân hủy cūng tạo ra khí PH_{3} do trong xương và tế bào thần kinh cũng chứa các hợp chất của photpho. Khí này thoát lên khỏi mặt đất gạ̣p không khí sẽ tự bốc cháy cho ánh sáng lập lòe lúc tắt lúc hiện nên gọi là "ma troci".

123 - Cây phui tuyết

Ơ các nước ôn đới, về mùa đông rất lạnh, cây cối thường rụng hết lá và bị phủ tuyết tráng xóa.

Ta có thể tạo ra cảnh cây phủ tuyết như sau: dùng các phoi đồng chấp nối thành một cái cây rụng hết lá. Thả chìm cái cây này vào cốc thủy tinh loại lớn chứa đầy dung dịch AgNO_{3}. Sau vài giờ cây sẽ bị phủ đầy "tuyết" trấng xớa.

Giải thich: Cu hoạt động hơn Ag nên đẩy Ag ra khỏi muới AgNO_{3} :

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3}=\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag} \downarrow
$$

Các tinh thể Ag bám trên cành cây trông giống như cây bị phủ tuyết.

124 . Chiếc đūa tạo lửa

Bạn tuyên bố là có chiếc đũa tạo lửa. Có thể dùng nó để lấy lửa khơng cần đến diêm. Bạn đưa đẩu đũa tủy tinh này vào chén
sứ. Chắt chứa trong chén sứ bùng cháy.
Giải thich: Chất chứa trong chén sứ là cacbon sunfua CS_{2}. Đầu đũa thủy tinh cần được đốt nóng trước. Chất CS_{2} có thể bốc cháy ở nhiệt độ thấp phát ra ngọn lửa màu vàng có mùi khó ngửi. Nên thổi tất ngọn lừa ngay.

125 - Chát làm sôi dung dịch

Có hai chậu hay bình thủy tinh chứa dung dịch màu tím hồng và màu xanh.

Bạn tuyên bố là mới điều chế được một chất có tính chất kì lạ là làm sôi ngay các dung dịch mà không cần đun nơng.

Bạn bò vào các dung dịch trên các mẩu nước đá khô (CO_{2} ở trạng thái rấn hay còn gọi là tuyết cacbonic. Nước đá khô sẽ thãng hoa rất nhanh làm các bọt khí CO_{2} thoát ra rất mạnh trông giớng như các dung dịch đang sôi sùng sục.

Muón có dung dịch màu tím hồng ta pha vào nước vài tinh thể KMnO_{4}, dung dịch màu xanh thì pha vài gam $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$.

Các dung dịch có màu làm cho thí nghiệm đẹp mắt hơn.

126 - Bong bơng xà phōng bay lo lưng

Bạ dùng ông thủy tinh nhỏ để thởi vào nước xà phòng đựng trong một bình thủy tinh. Bong bóng xà phòng bay lên và lơ lửng ở gần miệng bình chứ không rơi xuống đáy bình.

Cách làm: Trong bình thửy tinh chứa nước xà phòng bạn đã nạp đầy khí CO_{2}. Khí CO_{2} nặng hơn không khi ngãn không cho bong bơng xà phòng rơi xuống đáy bình.

127 - Siug hoi

Kẹ một ống nghiệm dài 20 cm có thành dày vào giá thí nghiệm. (Xem hình vẽ)

Cho vào ống nghiệm khoảng $10 \mathrm{~cm}^{3}$ giâm (dung dịch $\mathrm{CH}_{3} \mathrm{COOH}$ 5%) và $5 \mathrm{~g} \mathrm{CaCO}_{3}$ đđá vôi) rời nút chặt bàng nút bấc, sẽ có phản ứng:

$$
\mathrm{CaCO}_{3}+2 \mathrm{CH}_{3} \mathrm{COOH}=\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}_{2}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}\right.
$$

Khi CO_{2} sinh ra từ phản ứng trên tạo ra áp suất lớn đẩy nút bán đi đi và phát ra tiếng nố.

128 - Quả cầu lưa

Cho một quả cầu làm bằng các sợi dây thép vào một bình thủy tinh rộng miệng. Quả cầu sẽ cháy phát ra những tia lửa sáng rực kèm theo những tiếng nổ lách tách, trông rất đẹp mắt.

Cách làm: Lấy các sợi dây thép từ ruột phanh xe đạp đế làm một quả cầu to bằng quả bóng bàn. Dùng cạap sất đốt nóng đỏ quả cầu đã gài lên đó một mẩu than gỗ để làm mồi. Đưa nhanh quả cầu vào bình thủy tinh có dung tích lớn và miệng rộng chứa đầy oxi. Lúc đầu mẩu than cháy, sau đơ quả cầu thép sẽ cháy mạnh phát ra những tia lửa sáng chói.

Đây là thí nghiệm đớt sắt trong oxi.

$$
3 \mathrm{Fe}+2 \mathrm{O}_{2}=\mathrm{Fe}_{3} \mathrm{O}_{4}
$$

Để cớ oxi dùng cho thí nghiệm trên có thé điều chế bằng cách nhiệt phân KMnO_{4} hoạc KClO_{3} với chất xúc tác MnO_{2}.

$$
2 \mathrm{KMnO}_{4}=\mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}
$$

hoặc:

$$
2 \mathrm{KClO}_{3} \stackrel{\mathrm{MnO}_{2}}{=} 2 \mathrm{KCl}+3 \mathrm{t}_{2}
$$

Phàn ứng tỏa nhiều nhiệt, để tránh vỡ bình thủy tinh nên đặt bình trên tấm amian.

129 - Lắc cũng làm đởi màu dung dịch

Trong một binh thủy tinh nút kín chứa một chất lỏng không màu. Bạn cầm bình lác mạnh lên phía trên. Chất lỏng trong bình biến thành màu xanh đục, mười giây sau nó chuyển sang màu hờng rời biến thành không màu.

Cách làm: Hòa tan $5 g \mathrm{KOH}, 3 g$ đextrozo, một ít chất xanh metylen vào một phần tư lit nước và đố vào bluh dung tích một lit, nút chặt bình bà̀ng nút cao su. Khi lắc nhanh và mạnh về phía trên sê tạo ra sự đới màu. Nếu lắc nhanh và mạnh hơn, chất lỏng sẽ giữ màu lâu hơn.

Có thể lặp lại thí nghiệm nhiều lần, sau vài ngày các chất phản ứng sẽ mất dần tính đổi màu. Nên lấy rất it chất xanh metylen. Sự đổi màu xảy ra do tác động của không khi lên chất phản ứng.

130 - Dung dịch làm nượ dóng băng

Đở một it nước lên một miếng gỡ mỏng rồi đặt lên đó mợt cốc thủy tinh. Đổ nước vào cốc rồi hòa tan vào đó 50 g muối amoni nitrat $\mathrm{NH}_{4} \mathrm{NO}_{3}$. Quấy cho muối hòa tan, sự hòa tan hấp thụ khá nhiều nhiệt làm cho dung dịch trong cốc lạnh đến mức nước ở đáy cốc đóng băng làm cho miếng gỗ dính chặt vào đáy cốc.

131 - Nhiệt độ làm thay đổi màu cua dung dịch

Có các dung dịch màu xanh và màu hồng. Dun nóng màu biến mất. Để nguội màu lại hiện ra.

Cách làm: Dung dịch màu xanh là dung dịch iot có pha vài giọt nước cháo (hồ tinh bột). Dun nóng, màu xanh biến mất, để nguội lại hiện ra.

Dung dịch màu hồng là dung dịch NH_{3} có pha vài giọt dung dịch phenolphtalein.

Trong dung dịch NH_{3} có cân bàng:

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Khi đun nóng cân bàng chuyến dịch về phía tạo ra NH_{3} làm mất màu hồng. Để nguội cân bầng chuyển dịch về phía tạo ra OH^{-}nên màu hồng lại hiện ra.

132 - Lưa mลัน lục

Bỏ mợt it tinh thế crom (VI) oxit CrO_{3} vào bình có dung tích nửa lit và thêm vào đó vài mililit cồn $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ ta sẽ có những ngọn lửa màu lục ở trong bình.

Giải thich: CrO_{3} là chất ở dạng tinh thể màu đỏ thẫm. Dun đến $250^{\circ} \mathrm{C}$ nó phân hủy:

$$
4 \mathrm{CrO}_{3}=2 \mathrm{Cr}_{2} \mathrm{O}_{3}+3 \mathrm{O}_{2}
$$

$\mathrm{Cr}_{2} \mathrm{O}_{3}$ là chất oxi hơa mạnh, nó oxi hớa $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ phản ứng tỏa nhiệt làm cho $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ cháy.

Có thể điều chế CrO_{3} bằng phản ứng sau:

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4} \text { dặc }=2 \mathrm{CrO}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

133- Chũ I่̛a

Bạn đưa đầu điếu thuốc lá đang cháy vào gần mép tờ giấy, một dòng chũ được viết bà̀ng lửa xuất hiện.

Cách làm: Hòa $10 \mathrm{KNO}_{3}$ vào $25 \mathrm{~cm}^{3}$ nước. Dùng chổi lông viết một dòng chữ lên một tờ giấy dày thấm nước. Các chữ viết liền nét và viết đi viết lại nhiều lần để tăng lượng muối trên nét chữ. Phơi khô rồi mới đốt cạnh mép giấý nơ bất đầu của nét chữ.

Giải thich: Khi bị đốt nóng muối KNO_{3} bị phân hủy:

$$
2 \mathrm{KNO}_{3}=2 \mathrm{KNO}_{2}+\mathrm{O}_{2}
$$

Oxi giải phóng ra làm cho giấy cháy nhanh theo nét chū trông
như dòng chư được viết bằng lửa.

134- Làm màu xanh xuất hiện

Có hai dung dịch không màu đem đở lẫn vào nhau, sau vài giây màu xanh xuất hiện.

Cách làm và giải thich:
Hòa tan $0,5 \mathrm{~g} \mathrm{KI}$ vào $300 \mathrm{~cm}^{3}$ nước ta được dung dịch thứ nhất.
Hòa $\tan 0,2 g \mathrm{Na}_{2} \mathrm{SO}_{3}$ vào $15 \mathrm{~cm}^{3}$ dung dịch hồ tinh bột và cho thêm $1 \mathrm{~cm}^{3}$ dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4}$ loãng ta được dung dịch thứ hai.

Đố hai dung dịch vào nhau sẽ có phản úng:

$$
\begin{aligned}
& 4 \mathrm{KI}+\mathrm{Na}_{2} \mathrm{SO}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4}= \\
= & 2 \mathrm{I}_{2}+\mathrm{S} \downarrow+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

I_{2} được giải phóng gặp tinh bột sẽ biến thành màu xanh.

135- Ngọn lửa phăt ra âm thanh

Dùng một ớng thủy tinh hoạ̣c kim loại có chiều dài khoảng 60 cm , đường kính khoảng 15 cm và một bình để điều chế và đốt cháy hiđ̛ơ. Lâp dụng cụ như hình vẽ.

Đổ $\mathrm{H}_{2} \mathrm{SO}_{4}$ loãng vào bình có miệng rộng rồi bỏ vào đó các viên kẽm.

Nút bình bằng nút cao su có ống thủy tinh xuyên qua. Đợi vài phút để khí H_{2} đẩy hết không khí trong blnh ra rời mới đớt. Khi H_{2} cháy thì luồn vào ống thủy tinh như hình vẽ.

Khí H_{2} cháy làm rung cột không khi ở trong ống phát ra âm thanh nghe như tiếng đàn phong cầm. Cần điếu chinh tầm cao của ngọn lửa sao cho âm thanh phát ra to nhất rồi láp chặt ơng thủy tinh vào giá thí nghiện.

Để cơ âm thanh to, ngọn lửa hiđ̛o cần phải lớn do đó nên chọn ống dẫn khí tương đới lớn và có chiều cao khoảng 5 cm tính từ mặt nút.

Dùng vải bọc chiếc lọ lại trước khi đốt H_{2} để bảo đảm an toàn tuyệt đới.

136. Dập tăt rồi thắp lại ng̣̣n nến bằng khí

Bạn cầm một ơng đong đựng một khí đở vào ngọn nến đang cháy, ngọn nến tất. Cầm tiếp ớng đơng thứ hai đổ vào ngọn nến vừa tát, ngọn nến lại bùng cháy.

Giải thich: Ống đong thứ nhất chứa khí CO_{2} còn ống dong thứ hai chứa khí O_{2}. Cần đổ ngay khí O_{2} khi ngọn nến vừa tất và còn tàn đỏ.

137- Phat hóa bàng nuodc

Đở 5 g bột nhôm lên một miếng gạch men thành đơnng hình nón cao độ 1 cm . Rác khoảng $0,5 \mathrm{~g}$ bột natri peoxit lên, dùng que đóm gạt nhẹ sao cho bột natri peoxit thấm vào kim loại nhôm.

Nhỏ một giọt nước vào hốn ḥ̛p nơ sẽ bùng cháy với ngọn lửa sáng chơi.

Giải thích: $\mathrm{Nước} \mathrm{tác} \mathrm{dụng} \mathrm{với} \mathrm{Na}_{2} \mathrm{O}_{2}$ theo phản ứng sau:
$2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{NaOH}+\mathrm{O}_{2}$
Phản ứng trên giai phớng O_{2} và tỏa nhiệt làm cho bột nhôm bốc cháy.

138- Ngọn lửa không gây bỏng

Chuẩn bị một hỗn hợp gồm $15 \mathrm{~cm}^{3}$ cacbon sunfua và $1 \mathrm{~cm}^{3}$ cacbon tetraclorua. Đổ vài centimet khới hỗn hợp đó vào lòng bàn tay rồi châm lửa đốt. Bàn tay sẽ bốc cháy với ngọn lửa mảu vàng.

Sự bay hơi nhanh của các chất trên làm cho sức nơng giảm đi và ngăn không cho tay bị bỏng.

Cần dùng hỗn hợp vừa mới chuẩn bị vì nếu để lâu cacbon tetraclorua sẽ hay hơi và chất còn lại sẽ gây bỏng.

Có thế đơ hốn hợp vào chiếc khăn mùi soa rồi đốt. Sau khi biểu diễn khān vẫn còn nguyên không cháy.

139. Vật nổi trên cạc chất lởng khác nhau

Dựa vào khối lượng riêng khác nhau của các chất lỏng khác nhau ta có thể thả các vật nổi khác nhau.

Đổ $100 \mathrm{~cm}^{3}$ thủy ngân vào ống đong dung tích $500 \mathrm{~cm}^{3}$ rồi thá vào đó một vệt băng sắt.

Đổ tiếp $100 \mathrm{~cm}^{3}$ cacbon tetraclorua và thả vào một viên băng phiến (naptalen). Tiếp đến đổ $100 \mathrm{~cm}^{3}$ nước và cho vào một mẩu gỗ. Cuối cùng đó $100 \mathrm{~cm}^{3}$ dầu hỏa và thả vào một cái nút bấc.

Dể tránh sự bốc hơi của dầu hỏa ta cần đậy kín ống đong lại.

140- Dập bïuh thủy tinh

Bạn tuyên bố là có sức khỏe phi thường cơ thể dùng tay không đập vỡ một bình thủy tinh to vã có thành rất dày.

Bạn làm ra vẻ dùng hết sức lực đập vào nút bình, mạnh đến nối bình tơe khói và tay bạn thì bị thương nhưng bình quá dày
nên không võ̃.
Cách làm: Cho vào blình vài giọt dung dịch NH_{3} đậm đạ̣c. Dùng lọ nhựa con đựng thuớc nhỏ mắt đê đựng dung dịch HCl đậc. Dá̛u kín lọ này trong nû́t bình thủy tinh được cuộn bà̀ng giáy. Trên mặt nút bôi dung dịch FeCl_{3}. Bàn tay bạn bôi dung dịch KSCN. Khi bạn đập vào nút bình axit HCl đặc rợi xuống đáy bình gạ̣p dung dịch NH_{3} đạ̣c sẽ tạo ra khói trắng là các hạt chất rấn muối $\mathrm{NH}_{4} \mathrm{Cl}$.

$$
\mathrm{HCl}+\mathrm{NH}_{3}=\mathrm{NH}_{4} \mathrm{Cl}
$$

Bàn tay bạn chảy "máu" là do muối FeCl_{3} tác dụng với KSCN tạo ra muói $\mathrm{Fe}(\mathrm{SCN})_{3}$ có màu đỏ máu.

$$
\mathrm{FeCl}_{3}+3 \mathrm{KSCN}=\mathrm{Fe}(\mathrm{SCN})_{3}+3 \mathrm{KCl}
$$

141- "Nuôi trồng rong rêu"

Bạn có thể "nuôi trồng" rong rêu trong một chiếc chậu thủy tinh để trang trí trong nhà.

Cách làm: Cát tờ kẽm thành những giải dài và hẹp rời cuộn lại và đặt vào chậu thưy tinh. D ó dung dịch $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ đây chậu.

Kêm hoạt động mạnh hơn chì nên đẩy chì ra khỏi mưới:

$$
\mathrm{Zn}+\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}=\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+\mathrm{Pb} \downarrow
$$

Phản ứng trên tạo ra sự kết tủa các tinh thể chì trông giơng như rêu.

142- Rêu den

Dố hai dung dịch trong suớt vào nhau ta sẽ tạo ra rêu đen ngay tức khắc.

Cách làm: Dùng hai chậu thủy tinh dung tích $200 \mathrm{~cm}^{3}$. Chậu
thư nhất chứa $50 \mathrm{~cm}^{3}$ axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ đậm đặc. Chậu thứ hai chứa $50 \mathrm{~cm}^{3}$ nước đường (hòa 60 g đường vào $50 \mathrm{~cm}^{3}$ nước).

Đổ đồng thời hai chậu trên vào chậu thû́ ba dung tích $500 \mathrm{~cm}^{3}$ ta sẽ có ngay lớp rêu dày màu đen.

Chú \mathfrak{y} : Trong thí nghiệm trên ta chỉ được đổ từ từ và đồng thời hai dung dịch vào nhau hoạ̣c đở từ từ dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4}$ đạ̣c vào nước đường chứ không được đổ nước đường vào $\mathrm{H}_{2} \mathrm{SO}_{4}$ dạ̣c vì phản ứng tỏa nhiệt làm axit sôi lên và bán ra ngoài gây nguy hiểm.

143- Nhưng quả trững cón phép lạ

Có hài quả trứng giống hệt nhau và hai ớng đọng dựng hai dung dịch trong suốt giớng hệt nhau.

Bỏ một quả trứng vào một dung dịch nó không nổi cūng không chìm mà lửng lo ở trong dung dịch. Bỏ quả kia vào dung dịch thứ hai nơ chìm xuống tận đáy rồi lại từ tư nởi lên rồi lại chìm xuống, rồi lại từ từ nởi lên...

Cách làm: Ống dong thư nhất đựng dung dịch muối ãn bão hòa khối lượng riêng của nó lớn hợn 1 vì thế quả trứng không chìm mà chỉ lửng lơ trong dung dịch.

Ống dong thú hai đựng dung dịch axit HCl , khi bỏ quả trứng vào lúc đầu nó chìm ngay sau đó axit HCl tác dụng với chất CaCO_{3} có trong thành phần của vỏ trửng:
$\mathrm{CaCO}_{3}+2 \mathrm{HCl}=$
$=\mathrm{CaCl}_{2}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
Các bọt khí CO_{2} tạo ra đấy quả trứng nổi lên. Khi lên đến mặt thoáng, khi CO_{2} thoát đi, quả trứng hết lực đẩy nên lại chim xuóng.

Hiện tượng trên cứ lạ̣p đi, lạ̣p lại nhiều lần cho đến khi vỏ trứng bị phá hủy hoàn toàn.

144- Tiêng nở dười chân

Rắc những mẩu giấy xuóng sàn nhà, khi bước lên
 ta sẽ nghe thấy những tiếng nổ lép bép dưới chân.

Cách làn và giải thich: Chất gây nố là NI_{3}. Ò dạng khô chất này phát nố khi bị va chạm nhẹ. Sức nố không mạnh nhưng cực nhạy. Khi ẫm ướt nó không nổ.

Đổ dung dịch NH_{3} đậm đặc vào chậu thủy tinh rồi hòa iot và nitơ iơua vào đó. Lọc dung dịch lấy phần bột ẩm phết lên những miếng giấy lọc. Xé giấy lọc thành những miếng nhỏ rồi phơi thật khô.

145- Cháy ó dữ nuouc

Sục đầu ớng dẫn khi vào nước trong chậu, lửa cháy sáng từng hồi, trông thật kì lạ.

Cách làm: Đun nơng khoảng $200 \mathrm{~cm}^{3}$ nước trong chậu cho tới $70^{\circ} \mathrm{C}$ rồi bỏ vào đó vài mẩu photpho trắng. Sục ống dẫn khi O_{2} từ bình điều chế O_{2} vào chậu, photpho trấng gạp O_{2} sẽ cháy sáng.
O_{2} điễu chế bà̀ng cách nhiệt phân KClO_{3} có xúc tác là MnO_{2} hoặc nhiệt phân KMnO_{4}

$$
\mathrm{MnO}_{2}
$$

$$
2 \mathrm{KClO}_{3}=2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

146- Būc ve bằng 1ủa

Dùng bút lông và thuớc vẽ đặc biệt để vẽ một bức tranh. Khi vừa vẽ xong các nét vẽ liển bốc cháy tạo ra bức vẽ bằng lửa.

Cách làm: Hòa tan photpho tráng vào cacbon sunfua để làm thuốc vē. Khi vẽ xong cacbon sunfua bay hơi và photpho trắng tụ̣ bốc cháy trong không khí.

Chú ý ý: Phải vẽ nhanh để xong trước khi photpho bốc cháy. Dung dịch photpho rất dễ bắt lửa và gây bỏng da nên phải thận trọng khi sử dụng.

147- Ngọn lủa lank

Cho một mả̉u photpho trắng vào một ống nghiệm đựng nước, nút ống nghiệm bằng nút cao su có ống dẫn khí xuyên qua (xem hỉnh vẽ). Đun sôi nước trong ống nghiệm, lúc đơ ở đầu ống thủy tinh sẽ xuất hiện ánh sáng xanh và lạnh vì khi đưa đầu que diêm vào, que diêm không bốc cháy.

148- Vẽ ngưa và̀n

Dùng dung dịch muối chì vẽ con ngựa và một loại và̀n của nó. Dùng dung dịch muối cađimi vē loại và̀n thứ hai.

Đặt bức vẽ vào chậu thủy tinh rồi phun dung dịch $\mathrm{H}_{2} \mathrm{~S}$ vào các vằn màu vàng và màu đen hiện lên.

Giải thich: Khi phun dung dịch $\mathrm{H}_{2} \mathrm{~S}$ vào sẽ cơ phản ưng tạo ra các kết tủa màu vàng và màu đen như sau:

$$
\begin{aligned}
\mathrm{Pb}^{2+}+\mathrm{S}^{2 \cdot}= & \mathrm{PbS} \downarrow \\
\mathrm{Cd}^{2+}+\mathrm{S}^{2 \cdot}= & \text { Den } \\
& \text { Vàng } \downarrow
\end{aligned}
$$

149- Lắc bột trẳng thành bột vàng

Trong hai chén đựng hai thứ bột màu tráng. Dớ chúng vào một chiéc hộp, đậy náp kín và lấc mạnh, khi đổ ra bột màu trắng đã biến thành màu vàng.

Cách làm và giải thich:
Hai thứ bột màu tráng là bột $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ và KI đã được nghiền thật nhỏ thành bột mịn. Khi lắc mạnh chiếc hộp để trộn đều hai thứ bột vào nhau sẽ có phản ứng tạo ra PbI_{2} màu vàng.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI}=\underset{\text { Màu vàng }}{\mathrm{PbI}_{2}}+2 \mathrm{KNO}_{3}
$$

Nếu đở hai thứ bột đã được trộn đều này vào nước ta sẽ được huyèn phù màu vàng rất dẹp.

150- Lảm rựu biến thanh nữc, nữe thảnh sũa

Đơ "rượu vang" màu tím hồng vào một bình không, nút lại rồi lá́c lên, "rượu vang" biến thành nước không màu. Dổ tiếp "nước" ở bình thứ hai vào bình này, lác lên nó lại biến thành "sữa" màu trắng.

Cách làm và giải thích: Cho vài tinh thể KMnO_{4} và $2 \mathrm{~cm}^{3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ đặc vào nước ta được dung dịch màu tím hồng rất đẹp trông như rượu vang. Dổ "rượu vang" này vào bình chứa khí SO_{2} không màu trông như một bình không, nút lại rồi lắc lên sẽ xảy ra phản ứng oxi hóa - khử làm mất màu dung dịch KMnO_{4} trong môi trường axit $\mathrm{H}_{2} \mathrm{SO}_{4}$:

$$
5 \mathrm{SO}_{2}+2 \mathrm{KMnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Đổ tiếp "nước" ở bilnh thứ hai đó là dung dịch muối bari không màu vào bỉnh này sê tạo ra kết tủa trấng BaSO_{4} trông như sữa:

$$
\mathrm{SO}_{4}^{2-}+\mathrm{Ba}^{2+}=\mathrm{BaSO}_{4} \downarrow
$$

Để có khí SO_{2} ta có thể điều che̛ bà̉ng cách cho $\mathrm{H}_{3} \mathrm{SO}_{4}$ loãng tác dụng với muối $\mathrm{Na}_{2} \mathrm{SO}_{3}$:

$$
\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

Khi SO_{2} nặng hơn không khí nên có thể thu trực tiếp bà̀ng cách cám ơng dẫn khi đến tận đáy bình cho no đẩy hết không khi ơ trong bình ra.

151. Làm mát màu rự̛̣ Whisky

Rượu Whisky có màu đỏ nâu, lấc lên màu biến mất.
Cách làm và giải thích:
Dùng vỏ chai rự̛̣u Whisky đựng nước cơ pha thêm cồn iot ta được chai "rượu Whisky".

Dùng vải gói bột muối $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ đặt vào trong cái nút vặn của chai sao cho khán giả không nhỉn thấy. Khi lắc mạnh, muối tan ra và tác dụng với iot tạo ra những họ̣p chất không màu:

$$
2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2}=2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}
$$

152- Ån "1ưa"

Một quả̉ chuới chín bóc lửa được đưa vào miệng ăn ngon lành. Nghe qua đả thấy khiếp sọ!

Bạn có thể thực hiện màn biểu diễn này với nho khô rực cháy và dùng dĩa dưa vào miẹ́ng.

Cách làm và giải thích
Bạn hãy nhúng một đầu quả chuới chín vào cồn etilen hoạ̣c rượu rồi dùng bật lửa đốt lên. Ngọn lửa sẽ tắt đi bà̀ng cách bạn thới ngay vào lúc đưa quả chuói vào miệng.

Sự nguội nhanh của những trái cây bị đốt lửa giúp ta cơ thể "ăn" liền ngay khi trái cây đang rực lửa.

PHÀ̀N HAI

CHUYỆ̃ VUI VÀ GIAI THOAG VÊ CÁC NHÀ HÓA HOC

1. Phát minh do... mgù quên

Một dêm Carothers - nhà hóa học Mi, sau nhiều ngày dêm làm viẹc căng thẳng, định chọ̣p mắt it phút. Nhưng... ông đã ngủ liền tới sáng. Tỉnh dậy, ông hớt hoảng lo cho tã́t cả công sức thí nghiệm: có lẽ đả̛ tan thành mây khơi? Ai ngò, khi vù̀a nhấc chiéc đũa thưy tinh ở trong bình phản ứng lên, ông thấy chiếc đũa mè̀m nhũn và kéo theo một hốn hợp có dạng sội nhỏ mỏng manh óng ánh rất đẹp. Do là sợi tởng họp poliamit đău tiên trên thế giỡi sợi nilon ngày nay.

2- Nhưng ax̣e điểm chinh xảc

Người phát minh ra phương pháp lưu hóa cao su là Ch. Goodyear. Ông là người nghèo túng nhưng kiên trì theo duổi công việc của mình.

Một hôm, có một chủ xường máy hỏi người bạn của minh làm the nào tìm gặp được Goodyear, người này bèn bảo:
"Anh cứ tìm người nào mạ̣c quần cao su, áo cao su, di giày cao su, đội mũ cao su, có một câi vívi bằng cao su nhưng không
có lấy một đờng xu thì... đó chinh là Goodyear."

3- Sự dũng cảm của nhà hơa học

Carl Wilhelm Scheele - nhà hóa học Thụy Điển-xuất thân từ gia đình nghèo, phải bỏ học đi làm thuê cho một nhà bào chế. Tữ năm 14 tuổi, cậu bé Scheele đã tự mình đi vào hơa học. Năm 1775, những công trình thực nghiệm của Scheele đã nổi tiếng thế giói.

Ông đã phát minh nhiều định luật co bản của hơa học.
Scheele có thơi quen làm việc say mê. Công việc thi nghiệm của ông phải tiếp xúc thường xuyên với các chất độc hoạ̣c dễ nổ, cháy và có thể gây ra những tai họa bất ngờ.

Một hôm, trước khi vào phòng thí nghiệm, ông dạ̣n người giúp việc:
"Tôi sấp làm thí nghiệm với khí clo. Nếu chẩng may tôi ngã, gọi anh thì chớ vào vội mà phải mở tung cửa rồi chạy nhanh ra ngoài!" Người giúp việc hốt hoảng can nhưng ông điền nhiên: "Không thề được. Tính mệnh của tồi khồng phải là điều quan trọng! Quan trọng hon là phải tìm ra những tính chất của khi clo co".

Người giúp việc chỉ biết... lắc đầu nữa mà thôi.

4- Mun cao cuia mhà hó hqe

Nãm 1892, Nga Hoàng cử D.I.Menđeleev làm quan bảo vệ kho các vật chuẩn đo lường. Một lần, khi nghe tin Công tước Tể tướng Mikhain sẽ đến thãm kho, ông bèn ra lệnh cho nhẫn viên lấy những đồ dùng bà̀ng sất lủng củng chất đầy các phòng và rải khắp các lối đi.

Khi hướng dẫn vị Công tước Tể tướng đi thām các phòng kho,
thinh thoảng Menđeleev lai nói:

- "Xin lới, mời Ngài đi lối này ạ. Ngài coi chừng dưới chân, kẻo vấp ngã! ỏ chố chúng tôi chật chội lám ạ, rất chật chội ạ..."

Vâ bà̀ng cách đó, ông đã đề nghị đê chính phủ Nga Hoàng chấp nhận thêm ngân sách để mở rộng công trình nhà kho của ông.

5. Giac mo cia Kekule

Nếu như giấc mo của Menđeleev khiến ông sắp xếp được hệ thống tuần hoàn các nguyên tớ hơa học, thi giấc mo sau đây của Kekulé lại xây dựng dược cấu trưc vòng của phân tử benzen.
"Tồi làm việc ở bàn viêt với một cuốn sách và không đi đến đâu cả. Y̌ nghỉ của tôi lang thang. Các nguyên tử đang nhảy múa trước mắt tôi. Tuy nửa mơ nửa tỉnh nhưng tâm tư tôi có thế phân biệt đượ̛̣ những chuới dài nguyên tử vặn vẹo đây đớ như là những con rắn. Nhưng trời ơi! Một con rấn trong dó đột nhiên ngậm lấy cái đuôi của chính nơ và quay cuờng trựớc mát tôi tựa như trêu chọc tôi. Tơi giật nảy mình như bị sét đánh và tỉnh hản..."

Ông Kekulé khuyên:
"Hãy học cách nàm mớ; và có thế khi ây bạn sê tìm thấy sự thực... chỉ có điều là đừng có công bố cái giấc mo của chủng ta, trước khi chúng được kiềm nghiệm bẳng những hiêu biết tính táo".

6. Cấu tạo... như những chá khỉ:

(Đây là một giai thoai về Kekulé)
Một lằn, Friedrich August Kekulé ngòi trên xe buýt ở London, và nghỉ mãa mà chưa tìm ra được một cấu tạo nào tương ưng vái các tính chất của benzen. Ông mơ màng nhìn ra ngoài xe và chợt
thấy trên cành cây ơ công viên có sáu con khỉ, con nọ đánh đu vào chân con kia thành vòng sáu cạnh. Trong khi nô đùa, có lúc các chú khi bám với nhau bằng cả hai chân hai tay, có lúc lại chỉ bả̉ng một cạp tay chân. Một tia chớp nảy ra trong đầu ông:

- "Phải chãng sáu nguyên tử cacbon trong benzen cùng liên kết với nhau giống như sáu chú khỉ con vui vẻ kia?"

Kekulé đã xác định dược cá́u trúc vòng của benzen và xây dựng lí thuyết các hợp chất thơm nhờ... các chú khi.

Giai thoại khiến người ta nhớ đến quả táo rơi đã gợi ra định luật vạn vật hấp dẫn của Newton và ấm pha trà dang sôi giúp James Watt sáng tạo ra máy hơi nước.

7 - Lời tiên tri không tự giãc

Vào một ngày thu ấm áp, tiễng cười đùa của lũ trẻ không cản trở thầy giáo Rolan mơ màng ngủ gà ngủ gật. Bống tù tầng dưới của một kí túc xá riêng ở Kazan vang lên một tiếng nổ long trời. Chắc mẩm đã xảy ra một sự cố gì nguy hiểm, thầy vội vã lao xuống tầng hầm và lát sau lôi ra được một chú bé mật mày tái nhợt, đầu tóc bù xù. Dó là chú bé Xasa Butlerov, một học sinh rất say mê môn hơa, lợi dụng lúc rạ́ng người coi sớc, dã bí mật biến nhà ở thành "phòng thí nghiệm" riêng của mình.

Vi hành động tinh nghịch đó, thầy đã phạt gian cậu; và theo quyết định "sáng suốt" của Hội đồng nhà trường, cậu đã bị dẫn diễu qua nhà ân, trước ngực đeo một tấm bảng có ghi hàng chữ lớn: "Nhà Hóa học vĩ đại".

Tất nhiên, khi nghí ra hàng chữ chế nhạo này, các thà̀y giáo của Xasa đâu có ngò đó đã trở thành lời tiên đoán của kẻ đã "vi phạm nội quy nhà trường" sẽ trở thảnh nhà hóa học vĩ đại thực sự Alekxanđr Mikhailovich Butlerov - niè̀m tự hào và vinh quang rủa nền thos har Nera vò thâ mífi

8 . Không hẹn mà cùng nhau...

Vào cuối thập ki 80 của thế kỉ XIX, thế giới vẫn chưa tìm ra phương pháp tích cực nào để sản xuất ra nhôm thật là hiệu quả. Giá thành của nhôm thật là đắt với phương pháp điều chế của J. C. Oersted và Friedrich Wöhler . Ấy vậy mà khi đã tìm ra phương pháp hữu hiệu thì có những hai nhà bác học hóa học được cấp bằng sáng chế.

Trong lịch sử khoa học và kĩ thuật có không it những trường hợp mà hai nhà bác học trong cùng một nām đã đi dến kết luận hoạc những phát minh trùng nhau. Thẽ́ nhưng, ở hai nhà bác học đã củng điện phân dung dịch muối nhôm để điều chẽ nhôm là Charles Martin Hall người Mĩ và Paul Héroult người Pháp này thì sự trùng hợp càng thêm "chồng chất" bởi cả hai đều sinh năm 1863, nhận bằng phát minh năm 1886 và cuối cùng như thế hẹn ước, cả hai đêu mát năm 1914...

9 - Dồng tãc gỉa phât minh

Nām 1811, nhà hóa học Pháp Bernard Courtois đang làm việc trong phòng thi nghiệm. Trên bàn của ông có hai bình hóa chất: một đựng dung dịch chiết từ rong biển, chiếc kia đựng axit sunfuric. Bỗng nhiên con mèo yêu dấu của ông đang ngồi trên vai nhảy vụt xuống bàn làm đổ cả hai lọ hớa chất. Hai dung dịch pha trộn vào nhau. Va một làn khớ tím xanh bốc lên (đó là iot tháng hoa),

Từ hiện tượng đó, Bernard tìm thấy một hóa chất mới, đó là iot. Ngày nay, ai cũng biết tới chất hơa học này, song it người biết rà̀ng con mèo nghịch ngợm đó đã trở thành đồng tác giả của nhà hóa học: phát minh ra iot.

10. Phãt minh tù̀ trong đơng sắt gí

Thời kỳ chiến tranh lần thứ nhất, nhà khoa học Anh là H.Brearley được giao nhiệm vụ nghiên cữu của cải tiến vū khí, đạc biệt là vấn đề các nòng súng bị mài mòn rất nhanh. Brearley có nghĩ cách chế ra họp kim không dễ mài mòn đê ché tạo súng. Năm 1913, ông đã thử pha crom vào thép, song chua vùa ý vì lý do nào đó, bèn quả̉ng mẫu thử vào lẫn đống sất gì ngoài phòng thí nghiệm.

Rất lâu sau, tình cờ Brearley nhận thấy mẫu thứ ấy vẫn sáng long lanh, trong khi đống thép gi nễt cả. Ông đem mẫu này nghiên cứu tỉ mỉ, thấy thứ thép pha crom này chả̉ng hề sợ môi trường, khí hậu hay thời tiết nào, ngay cả khi ngâm vào axit và kiềm!

Nảm 1913, H.Brearley đã được nhận bà̀ng phát minh độc quyền của nước Anh. Ông đã tố chức sản xuất thép không gí ờ quy mô lớn và thực sự trở thành "người cha của thép không gi".

Câu chuyện này hần đặt ra một điều suy nghĩ: Gạ̣p những điều ki dị nào đơ thì cung chẩng nên lo đãng bỏ qua mà nên tự hói "vì sao thé" đé rồ tim ra căn nguyên của nó.

Dã biết bao nhiêu phát minh của thế giới đã hình thành như the đó!

11. Nhìn athưng chaỗi

kim cưong lấp lánh...

Khi tìm ra nguyên tố phóng xạ rađi, Hoàng gia Anh đã mời ông bà Pierre Curie và MarieSklodowska - Curie sang Anh đé thuyết trình về nguyên tơ này.

Trong bữa tiệc chiêu đãi long trọng của Hoàng gia, Marie nhìn. ngắm những chuối kim cương đẹp nhất lấp lánh trên cở đẻ trần
của các bậc mệnh phụ một cách thich thú và ngạc nhiên thấy ơng Pierre cũng nhìn chầm chà̀m vào những chuỡi kim cương đó.

- "Eím không thể tưởng tượng được có những đơ trang sực đep như thê ${ }^{n}$ - Marie nói:
- "Em bié́t không, Pierre đáp lại, trong bữa tiẹc lúc ngồi anh nghĩ ra một trò chơi: Anh làm con tính xem só kim cương đeo trên cổ mối bà khách cớ thể... xây dựng được bao nhiêu phòng thí nghiệm!" Học viện Hoàng gia Anh đã tạ̣ng ông bà huân chương Davy-phần thưởng cao quý nhất. Dó là cái "đĩa nhỏ bầng vàng" ông bà giao cho bé Iren 6 tuới giữ làm đồ chơi!

Đây quả là một gia đỉnh phi thường mà cả hai vợ chồng đều là nhà khoa học lốn của thé giới.

Riêng bà Marie được hai giải Nobel hóa học và vật li. Sau khi bà Marie nhận giải Nobel hóa học 24 năm, con gái và con rế của ông bà Curie là Iren và Joliot - Curie cũng được trao giải Nobel hóa học về đêe tài phóng xạ... Tên của ông bà được đặt cho tên một nguyên tố hóa học Curi Cm!

12. Chát khì chũa bệnh duy nhất

Vào cuói the̛ kỷ XVIII, khi dồn dập tìm ra hàng loạt các chất khí chưa từng biết, xã họi Anh đã rất quan tâm, đến mức ở Bristol, người ta đã thành lạ̣p ca mộ̣t viện nghièn cứu gọi là "Viện các khí" với mụ̂c đích dùng chất khí để chữa bệnh. Nhà hóa học Humphry Davy đự̛̣ củ̉ lảm thanh tra của Viẹn. Trong buổi họp long trọng để nghe báo cáo kết quả nghiên cứu, Davy đã đọc bài diển văn kết thúc cực ngán.
"Thưa các quý vị, trong tắt cả các khí, thực ra chì có một chất khi chữa được bệnh mà chúng ta đã biết từ lâiu - từ thuở khai sinh lập địa - đó là không khí sạch!*

13- Khí cười

Nhà hóa học Anh Humphry Davy khi nghiên cứu về các oxit nitơ dã phát hiện ra một loại oxit có tính chất sinh lif rất độc đáo - thậm chí... kì cục. Một số người tỏ ra hoài nghi kết quả này. Thế là Davy quyết định sẽ công bố chất khí này trong một buổi dạ hội gằn đó mà thành viên tham gia gồm toàn các bậc quý tộc Anh cả.

Khi Davy mang một cái blnh lớn đến dạ hội thì các quý ông, quý bà trong những trang phục lộng lẫy đắt tiền đã chờ đợi sẵn. Ông mở nắp bỉnh và... một cảnh tượng vô cùng lạ đã xảy ra...

Các quý bà cười như nác nẻ, cười đến chảy nước mắt, quặn ruột, mò hôi ướt đằm... đến khổ.

Một số quý tộc lại nhảy đại lên bàn ghế, làm võ mấy chiếc blinh pha lê tuyệt đẹp của chủ nhà. Một số vị khác lại thè mãi lưỡi ra và không ít vị xông vào nhau ẩu đả...

Và ông Davy, đứng trước cảnh đó, cūng tươi cười tuyên bố loại nitơ oxit mà ông dựng trong bình: $\mathrm{N}_{2} \mathrm{O}$ - đinito oxit.

Và khí này còn được gọi là khí cười.

14- Hoa hoc khac toain h甲c d chỗ não?

Một hôm, nhà toán học Dức Karl Gauss tranh luận với nhà hóa học Ý Avogadro. Ông Gauss tỏ ra khinh thường hóa học và cho ràng chỉ có toán học mới có các dịnh luật, còn hóa học chí là người phục vụ cho toán học mà thơi.

Avogadro dẫn Gauss vào phòng thí nghiệm và tự mình làm phàn ứng: cho một thể tích O_{2} tác dụng với hai thể tích H_{2} đê tạo thành hai thể tích $\mathrm{H}_{2} \mathrm{O}$ ơ dạng hơi:

$$
2 \mathrm{H}_{2}(\mathrm{k})+\mathrm{O}_{2}(\mathrm{k})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~h})
$$

Lúc đó nhà hóa học mới mìm cuời bảo nhà toán học:

- Ngài thấy chưa? Nếu hóa học đã muớn thì toán học phải chào thua. Hai cộng một, bất chấp toán học cûng vẫn chỉ là hai thôi đấy.

15- Cú đề cho anh ta rưa chai lọ!

Ghé thãm một người bạn, cũng là Viện sĩ Hoàng gia Anh là Papy, Humphry Davy kể: "Đây là lá thư của một chàng thanh niên thường đến dự các bài giảng của tôi. Anh ta đến xin một chân gì đó trong Viện. Chả hiểu nên xếp cho anh ta việc gì!"

Papy ngac nhiên:

- "Việc gì à? Cư dể anh ta rửa chai lọ. Nếu anh ta đồng ý thì ít ra cũng có chút lội ích cho công việc. Còn nếu không, anh ta chảng đáng giá một xu!"

Chàng thanh niên đồng ý và làm việc rất cần cù không kêu ca một lời. Anh ta chính là... Michael Faraday - một nhà bác học lởn đến nối Davy tự hào rà̀ng: "Trong số các phát minh của tôi thì phát. minh lớn nhất của tôi là... "phát minh" ra Faraday!".

Cao gầy, dáng điệu nhanh nhẹn, nhà hóa học Đức Friedrich Wöhler trông trè trung đến nối ông rất giống con trai minh. Khi người ta giới thiệu ông với Michael Faraday, Faraday đã vui vẻ xiết chặt tay ông:

- "Tôi rất sung sướng được làm quen với con trai của nhà hóa học đầu tiên tổng họ̣p được chất hữu cơ và xin nhiệt liệt chúc mừng cha anh!".

16- Dṑ tôi la một chuỗi "nêu nhu"

Alecxander Fleming, trong dịp nhận giải Nobel về phát minh
ra penixilin năm 1945, được các nhà báo hỏi vê thành công này, ông trả lời một cách nghiêm túc: "Cuộc đời tôi là một chuỗi "nếu như". Từ nhỏ, tôi chi muón làm mồt ông chủ trại như bố tối và không chịu học nếu như mẹ tôi không bắt tôi phải sống ở London. Tbi sẽ trượt ở kì thi vào Trường dại học Y St.Mary Hospital nếu như tôi không phải là một thanh niên giỏi bỡi lội, có thể đại diện cho nhà trường trong các Olimpic thể thao của sinh viên. Tồi sẽ suốt đời làm thầy thuốc nông thôn nếu như giáo sư Wright không chọn tôi làm phụ tá cho ông tại phòng thí nghiệm riêng - nơi tôi tim ra penixilin.

Phát minh này tôi dự kiến triển khai trong thực tế phải $\mathbf{1 5 - 2 0}$ năm sau, nếu như Đại chiến Thế giỡi không xảy ra, thương vong không nhiêu đến mức các loại thuóc chưa kiểm tra, cũng được phép sử dụng thi penixilin chưa chứng minh được công hiệu của mình, và bản thân tôi chưa được nhận giải Nobel".

17. Quặng Landau

Một hôm, nhà bác học nới tiếng Landau đang ngồi đọc sách cùng vộ thì có người khách lạ đến gặp. Người khách rụt rè noi:

- Xin lới Ngài vê sự đường đột này, nhưng vl từ lâu tôi đã ấp ủ nguyện vọng muơn được gạ̣p Ngài, nhất là sau khi Ngài cùng với Ngài Niels Bohr trong ngày hội Archimedes. Tôi là nhà khoáng vật học vừa may mán tì̀m được một loại quặng mới. Tôi xin phép được đạ̣t tên Ngài cho loại quạang quý hiếm này.
- Xin chân thành cảm ơn - Landau cảm kích nói - Tôi nghi là vinh dự to lớn đơ nên dành cho các nhà khoáng học lối lạc, cơn tôi chí là nhà vật lí.

Nhà khoáng học trẻ xúc động thực sự.

- Lòng ngưỡng mộ của tôi với Ngài là vô hạn. Tồi sùng bải

Ngài từ khi còn là sinh viên Khoa Hóa Dịa chắt ở Moscow. Tôi... tôi tha thiét mong Ngài nhận cho!

Khi nhà khoáng học ra về, Landau lại dọc tiếp cho vợ nghe tác phẩm của nhà thơ Nga vĩ đại Levmontov "Một anh hùng thời đại".

Quặng Landau ra đời và được đặt tên như thẽ đó.

18. Chì đơn giản là tôi ưng dụng hóa ḥ̣c

Năm 1943, Niels Bohr - nhà vật li học người Đan Mạch khi thoát khỏi tay bọn Dức quốc xã, ông phải rời khỏi Copenhagen. Nhưng trong tay ông còn có hai huy chương Nobel bà̀ng vàng của các bạn đồng nghiệp là James Franck (Mi) và Max Laue (huy chương Nobel của ông đã được đưa khỏi Dan Mạch trước đó).

Không muốn liều đưa các huy chương này theo mình, nhà bác học bèn hòa tan chúng trong nước cường toan (hốn hợp của HNO_{3} và HCl) và đạ̣t cái chai "không có gì đáng chú ý" này vào một xó trên sân nhà - nơi có nhiếu chai lọ bụi bặm bám đầy.

Sau chiến tranh, khi trở về phòng thí nghiệm của mình, Bohr trước tiên tìm cái chai quý báu đó và theo yêu cầu của ông, những người cộng sự đã tách vàng ra rời làm lại hai tấm huy chương.

Dáp lại sự cảm kích của các chủ nhân hai tấm huy chương, Niels Bohr chil nói:
"Đơn giản đó là tôi ứng dụng hơa học thôi"

19- Sự hiểu fàm thư vị

Nhà hóa học Mĩ S. Mulliken - giải thưởng Nobel hóa học 1966có bà vọ rất tận tâm và dịu hiền song chả̉ng biết chút gì về hơa học cả.

Một lần, gia đỉnh mờ tiệc, song khi khách mời đã đông đủ thì ông vẫn ờ phòng thí nghiệm chưa về.

Sau khi gọi điện cho ông, bà vợ thông báo với khách:

- Nhà tôi dang bận "giặt và là" tại phòng thí nghiệm, vì vậy ông ấy gửi lời xin lỗi các quý vị. Mời quý vị ngồi vào bàn tiệc cho.

Khách ān tiệc vui vẻ song không khỏi thắc mắc vì giáo sư chả̉ng bao giờ phí thì giơ cho các công việc lao động đơn giản. Hỏi ra mới biết, hóa ra bà vợ nghe lầm.

Ông báo tin minh dang bận "quan sát 1 ion" (To watch an ion) bà lại nghe là đang bận "giặt và là" (To wash and iron). Chẳng là hai nhóm từ này phát âm rất giống nhau mà.

$$
{ }^{*} \quad{ }^{*}
$$

Nhà hóa học công nghệ Karl (1874-1940) tính rất xuề xòa, chẳng bao giờ chú ý đến cách ăn mặc. Biết vậy, mẹ ông thường đi cùng để chãm sóc.

Một lần, ông được mời đến một hội nghị có bà mẹ đi theo.
Đến nơi, mở vali, bà hớt hoảng:

- Chết thật, chiếc áo đuôi tồm của con biến đi đâu rồi!
- Mẹ yên tâm đi - Bosch bình tĩnh nói - nớ sẽ đến bằng bưu điện mà!

Quả nhiên, hai ngày sau, một gói bưu phẩm cồng kềnh được gửi tới. Đó là chiếc bơm chân không bà̀ng thủy tinh được bọc rất cẩn thận bằng... chiếc áo đuôi tôm bằng nhung đen mái tinh.

20. Chảng phụ tá láu lỉnh

Nhà hớa học Đức Tiedman có một cuốn sổ tay mà trong đó ông vừa ghi những số liệu nghiên cứu, những nhận định vể vấn
đề đang tìm tòi, vừa ghi những ý nghĭ đầy sáng tạo lóe lên trong đầu. Ông coi nó là vật bất li thân đáng quý nhất trên đời; và chàng trai phụ tá giôi giang của ông cũng biết điều đó.

Một hôm, chàng ta ngỏ ý cầu hôn với con gái xinh đẹp của ông. Ông từ chối gay gát. Thế là... cuốn sổ tay không cánh mà bay. Ông bực bội vô cùng và nghĩ mãi... và đoán ra thủ phạm. Con gái yêu hay sớ tay đây?

Sáng hôm sau, nhà hóa học gọi chàng phụ tá đến:

- "Này anh bạn, tôi bàng lòng gả con gái cho anh đấy. Nhưng anh phải cố đứng đắn lên, sống cho trung thực. Vi dụ như: lấy cuớn sở tay của tôi thì phải mang trả ngay lập tức!...

21- Archimnedes cîèı tra

Nhà vua Hiero xứ Syracuse (trước công nguyên) đặt thọ kim hoàn làm một chiếc vương miện bằng vàng ròng để Ngài đội trong lể đãng quang. Song Ngài nghi ngờ bọn thọ đã ăn bớt số vàng mà Ngài đã đưa. Ngài bèn cho vời Archimedes đến.

- "Hây kiểm tra xem chiếc vương miện này có là vàng ròng như vàng trong kho lớn kho bé của ta không! Hay là...".

Archimedes gọi bọn thọ kim hoàn đến, và trước Nhà Vua ông cân chiếc vương miện (khới lượng m, (g), sau đớ dìm vào nước để xác định thể tích nước bị nó choản chổ (V(l)). Lấy khối lượng vương miện chia cho thể tích này ($m: V=d$), ông không thu dược kết quả 19,3 ứng với mật độ của vàng trong kho lớn kho bé của Vua mà được một số nhỏ hơn.

Archimedes cười đắc tháng với bọn thợ kim hoàn:

- "Các ngươi hãy giải thích điẽ̛u này với Đức Vua vô cùng tôn kinh đi!"

Và tất nhiên trò bịp bợm của bọn thợ kim hoàn đã được trừng
phạt đích đáng. Ai bảo chúng dám "cuốm" một phần vàng rồi thay vào đó một thứ kim loại nhẹ hon!

22- Nhà hóa hoc và các ngành khảe

- Langmuir - người đề xuất lî thuyết hấp thụ hiện đại gắn cả cuộc đời với môn leo núi và trượt băng.
- Seaborg, người phát minh và nghiên cứu hàng loạt nguyên tố mới họ siêu uran là cầu thủ hockey kiệt xuất.
- Nhà hóa học cao phân tử hàng đầu Ziegler say mê sưu tầm và nuối cá vàng. Đồng nghiệp nổi tiếng của ông là Cargin là người câu cá thiện nghệ và sưu tầm tem lớn.
- Chuyên gia hàng đầu về khí hiếm Aston lại là một nhà biểu diễn violonxen bậc thầy (đồng thời phát minh ra đồng vị phóng xạ).

Cũng như vậy, các nhà hóa học khác như Meyer, Perkin Anbuzov - đều có phản ứng mang tên mình-là những nhạc công vĩ cầm tuyệt vời.

- Ramsay- ông tở của khí trơ cũng như Carothers - ông tở của tơ sợi tởng hợp là các ca sĩ lẫy lùng.
- Borodin- nhà hóa học kiêm nhà soạn nhạc Nga lẫy lừng.
- Nhà hóa học đặt nền móng cho hơa lí Ostwald hàng năm đều có triển läm tranh cá nhân. Còn Kekulé ơng tổ của hợp chất thơn lại có khiếu ngoại ngữ và hội họa hiếm có.
- Davy, Van't Hoff nổi tiếng cả về hóa học lẫn các tác phẩm thơ ca, ngôn ngữ. Haber là nhà viết kịch, Lomonoxov kiêm cả sử học, ngôn ngư, họa sĩ. Còn Menđeleev gán với nghề đóng vali cố truyền!

23- Nhà hóa ḥ̣c thường sống lâu

Nhà hơa học thường xuyên phải tiếp xúc với chất độc đôi khi phải đứng hàng ngày để theo dồi một phản ứng hóa học... nên luôn phải có sức khỏe tốt?

Những bảng thống kê cho thấy tuổi thọ các nhà hơa học cao hon tuổi thọ trung bình.

- Thế kỷ XVIII trong khi tuối thọ trung bình của ngườị châu Âu là 30 thil các nhà hóa học là... 72
- Thế kỷ XIX, khi tuới thọ trung bình cũng của người châu Âu là 45 thì của các nhà hóa học là... 75

Nhà hơa học Pháp Chevreul- người tổng họ̣p chất béo đầu tiên sống tới 103 tuối.

Roger Adams - nhà hóa học Mĩ thọ xấp xi 100 tuổi, v.v...

24- Nhà hóa hoc mghiên cuiu

Nguyên tớ hơa học ở vỏ Trái Đất

- Nhiè̀u nhất: $\mathrm{O} \approx 50 \%$
$\mathrm{Si}=20 \% ; \mathrm{Al} \approx 7,4 \% ; \mathrm{Fe} \approx 5,0 \% ; \mathrm{Ca} \approx 3,3 \%$
$\mathrm{Na} \approx 2,4 \% ; \mathrm{K} \approx 2,35 \% ; \mathrm{Mg} \approx 2,35 \% ; \mathrm{H}=1 \%$
$\mathrm{Ti} \approx 0,6 \%$
- Ít nhất:

Tổng lượng poloni $9600 t$; actini $26000 t$;

$$
\text { rađon }<260 t \text {; atatin } 69 \mathrm{mgg}!
$$

Lượng hơa chất có trong cơ thể một người nặng trung bình 65 kg

Anh ta đã quyết định tạang người yêu dấu một chiếc nhẫn bà̀ng... sắt, nhựng không phải bằng sất thông thường mà bà̀ng sất lấy từ chính máu của mình! Cứ định kì lấy máu ra, chàng trai thu được một họ̣p chất mà từ đó tách sất ra bà̀ng phương pháp hóa học.

Nhưng chiếc nhẫn đã không bao giờ được đeo trên tay có gái như một bằng chứng tình yêu bởi... nó chưa được làm ra thì chàng trai đã chết vì bị mất máu, cho dù lượng sắt lấy ra khỏi cơ thế chàng chưa tới... $3 g$!

Các chàng trai, cô gái ngày nay vẫn rất nhớ câu chuyện này. Nhưng chẳng ai chứng tỏ tình yêu bằng cách này nữa, cho dù thật là cảm động.

26. "Máy tính điện tư dâu tiên" trong hóa hoc

Máy tính điện tử cớ khả năng làm được rất nhiều việc mà vai trò của máy tính điện tử trong thời đại này không ai là không công nhận. Toàn bộ việc làm của con người là biết giao phó chương trình hoạt động cho máy tính điện tử. Với sự giúp đõ của máy tính điện tử các nhà nghiên cứu biệ́t được mọi điều về vô số quá trình hớa học phức tạp trước khi đưa chúng vào trong thực tiễn.

Nhưng các nhà hơa học đã cơ trong tay một "máy tính diện tử" khá khác thường mà nó được phát minh ra vào khoảng 100 năm trước khi thuật ngữ máy tính điện tử xuất hiện trong ngôn ngữ thế giới.

Bộ máy đạ̣c biệt này là hệ thống tuần hoàn các nguyên tố.
Hệ thống tuần hoàn - máy tính điện tử này - tạo nên khả nãng tiên đoán sự tồn tại của các nguyên tố chưa biết, chưa được khám phá ngay cả ở trong phòng thí nghiệm. Và không chi tiên
đoán chúng, mả còn mố tả tính chất của chúng.
Máy tính điện tử này cho biết đó là kim loại hay phi kim nặng như chì hay nhẹ như natri... và nên tìm kiếm những nguyên tố bí mật trong các loại khoáng sản nào của Trái Dất.

Máy tính điện tử này - sản phẩm vi đại mà Menđeleev là người sáng chế - đưa hóa học tiến thật xa!

27- Vâi chuyện tức cườ tại lễ kỉ niệm nguyên tó flo

Nảm 1986, tại Paris, các nhà hóa học của nhiều nước đã họp nhau lại đé ki niệm 100 năm ngày Henri Moissan (1852-1907), nhà hơa học Pháp, khém phá ra khí flo tự do. Tại buỡi lê đã có nhiều ngừò phát biểu, nhiêu báo cáo khoa học dự̛̣c trình bày và thậm chi đã phát hành loại tem kỉ niệm.

Và cuang trong buởi lễ đó đã diễn ra những chuyện tức cười. Nhà họa sĩ phác thảo mẫu tem đã quyết định trình bày trên con tem phát minh của Moissan. Thế nhựng trên con tem, họa sỉ đã trình bày không phải là phương trình phản ứng phân hưy diẹn hóa flohiduric tinh khiét dé tạo khi flo tụ do do Moissan tim ra, mà là phương trình của phản ứng ngực̣ lại với nó. Hóa ra là người ta đã ki niệm nhà hóa học xuắt chûng ngươi Pháp đã phát minh ra sự tương tác giưa flo và hidro.
M.Gutlitski, báo cáo viên người Mi, đã gây ra một chuyện tức cười khác. Ông đã chứng minh rà̀ng khí flo được tìm tháy không phải vào năm 1886, mà là vào năm 1881. Nguời phát minh ra no không phải là Moissan, mà là Bohuslav Brauner, nhà hóa học Tiệp Khâc. Brauner đã xác định được rà̀ng khi đớt nơng CeF_{4} (do ông tìm ra dưới dạng đihiađrat) sé tạo ra hơi nước, HF và một chát khl khác có mùi hăng...

Theo M. Gutlitski, cùng với một số thí nghiệm khác, Brauner đã chứng minh được rà̉ng hỗn hợp khí đó cơ bao hàm khí flo tự do, sau khi công bố các kết quá thí nghiệm của mình trên các tạp chí hóa học có uy tín nhất, quả thật, Brauner cũng có dè dặt khi tuyên bố rằng mình đã phát minh ra nguyên tố thứ 9. Báo cáo viên đã đưa ra một câu hỏi: phải chāng đó là cơ sở để phủ nhận quyền uu tiên của Brauner.

Không nên nghĩ rà̀ng sau bản báo cáo đó, những người tở chức buổi lễ đã nản chí và tuyên bố giài tán hội nghị. Ơ phòng bên, cạnh phòng họp có bán một tuyển tập "Ki niệm 100 năm đầu tiên ngày tìm ra khí flo". Trong tuyển tập đã nói rõ: sự thận trọng của Brauner là đúng. Sau ông, nhiều người đã lạ̣p lại thí nghiệm trên nhưng không ai tìm ra được khí flo tự do trong hốn hợp được tạo nên.

28- Gali va hai nhà bác hoc

Khi xây dựng bàng tuần hoàn các nguyên tớ, bằng lî thuyét của mình, Mendeleev đã tiên đoán sự tồn tại của một số nguyên tố, và gali là nguyên tố đằu tiên mà ông tiên đoán, được tìm thấy trong thiên nhiên. Người tìm ra nguyên tố này là nhà quang phổ học người Phâp Lecoq de Boisbaudran khi phân tích quặng kẽm ở gần thung lũng Argène. Ồng thông báo điều này trên tạp chí "Báo cáo của Viện Hàn lâm Khoa học Paris" vào ngày 27-8-1875. Ông đê nghị đặt tên nguyên tố mới là gali với lí do "tôn vinh nước Pháp" (vốn có tên cũ là Gaule). Song ông cũng có ý "lưu danh muôn thuở" vì Lecoq; tên ông, có nghỉa là "con gà trống", tiếng Latinh là gall. Thật là "một công đôi việc".

Tháng 11/1875, tạp chi này đến St.Petersburg, thủ đô nước Nga. Người vui mừng không kém cha đẻ của nguyên tố mới là Mendeleev, dù trong bài báo Lecoq de Boisbaudran không một lần
nhác đến tên ông. Chả̉ng có gì đáng trách! Chảng qua vì nhà quang phố học vốn không quan tâm dến hớa lí thuyết và vô co, nên chưa từng biết đến phát minh vỉ đại của nhà bác học Nga. Đêm hôm đó, Menđeleev viết đến Viện Hàn lâm Khoa học Paris một bài báo bà̀ng tiếng Pháp nhan đê "Nói về sự khám phá ra gali", trong đó ông đính chính những só liệu nhà bác học Pháp đưa ra, theo dự đoán của ông. Ông két luận "Phát hiện ra gali của Lecoq de Boisbaudran - mà cho phép tôi duọc coi là một trong những nguời bạn của mình - là một dẫn chưng dầy thuyết phưc cuaa dịnh luật tuăn hoàn". Một tuần sau, bức thư dến tay Lecoq de Boisbaudran. Ông vội lạ̣p lạa thí nghiệm và thấy Mendeleev đoán đúng. Ông gữi tậng nhà bác học Nga một tấm ảnh với dòng chữ: "Xin gưi tời Ngài lòng kinh trong sâu sác và rát vinh dư dự̛ Ngài nhận làm bạn".

Từ đó, hai người trao đới thư từ rát thân mật. Trong một bức thư, Lecoq de Boisbaudran tha thiết mời Mendeleev dến dự đám cưới của con gái mình, song Mendeleev không tới dự̣c.

Năm 1879, Mendeleev báo cáo các bổ sung về định luật tuần hoàn có trình bày mẵu gali kim loại, quặng thạch anh chứa gali và một số họp chất khác của gali do Lecoq de Boisbaudran gừi tặng.

Mãi 15 nảm sau, vào năm 1890 , hai nhà bác học mới gạap nhau tại Paris. Trong buối chiếu đãi của Boisbaudran có mặt hằu Hiết các nhà hơa học nổi tiếng của Pháp.

29. Trong cuộc dua khảm phá ra oxí

Nếu như lịch sử hơa học đã công nhận Carl Wilhelm Scheele (1742-1786), người Thụy Diển và Joseph Priestley (1733-1804), người Anh là hai nhà hóa học đầu tiên độc lập tìm ra oxi và Antoine Laurent Lavoisier (1743-1794), nhà hơa học Pháp là người giải
thích bản chất, vai trò của oxi trong các phản ứng hóa học, chủ yếu là phản ứng cháy, đưa lịch sử hóa học từ chỡ "đứng bà̀ng đầu vái thuyết Phlogiston chuyển thành đứng bằng hai chân" và cũng là người đặt tên cho oxi thì có lẽ ít người biết đến một cái tên nữa: Erasmus Darwin (1731-1802)! Ông là người có công làm "xúc tác" cho việc phổ biến cái tên "oxi" ở nước Anh và truyền bá tư tưởng hóa học mới trong thơ của minh.

Vê nghề nghiệp thì Darwin là một thầy thuốc. Ông giành đưọc danh hiệu tiến sỉ và đã vié̛t một bản luận án đồ sộ về y học và cuộc sống động vật - cuốn Zoonomia. Khi không theo đuổi y học, Darwin là nhà sáng chế say mê và là nhà thực nghiệm nhiệt tình trong khoa học vật lî, đạ̣c biệt về mảng tính chất các chất khí và hơi. Một nghiên cứu về sự bay hơi đã đưa ông tới chiếc ghế thành viên của Viện Khoa học Hoàng gia năm 1761. Ông là người thúc đẩy ngành vật lí, khí tượng, địa chất bằng các thực nghiệm và quan sát trực tiếp. Dóng gớp của ông vào ngành hớa học chi là gián tiếp song rất quan trọng. Những quan diểm khoa học, hơa học của ông được thể hiện trong tác phẩm thơ hết sức nổi tiếng lúc đơ: The Botanic garden (Vườn thực vật). Nhiều độc giả tho công nhận Darwin là nhà thơ hàng đầu trong nền thi ca Anh.

Chính qua The Botanic garden, ông giới thiệu oxi với quằn chúng và còn nhiều từ ngữ hớa học trong tiếng Anh nưa. Sự đóng góp của Darwin với hóa học thông qua vai trò của ông trong nhóm "Lunar Society of Birmingham" - một nhóm gồm những con ngưòi nỡi tiếng.

Ý tưởng thành lập "Lunar Society" đầu tiên là tù Benjamin Franklin, người tới Birmingham năm 1758 và làm quen với hai chàng trai trẻ Darwin và Matthew Boulton. Năm 1763, Darwin thuyết phục Boulton chế tạo ra một toa xe chạy bằng hơi nước. Tới 1765, khi bác sĩ William Small từ Mi sang tới Franklin và định cư ở Birmingham thì nhóm "Lunar" được hình thành. Hai nâm sau, James Watt nhập hội và vài tháng sau đó lại thêm cả

James Keir và Josiah Wedgwood nữa. Họ đọc ngấu nghiến mọi thứ và tranh luận vê tất cả những tiến bộ khoa học, kỉ thuật họ biết đến. Lại nữa, vào nām 1780, Joseph Priestley tới Birmingham và các thực nghiệm của Priestley đã hướng sự chú ý của "Lunar" vào hóa học (khi đó, Priestley đã điều chế được khí oxi bà̀ng cách đun nóng oxit đỏ của thủy ngân trong tia mặt trời được tập trung bằng thấu kính).

Nước ở thời đó được coi là một "đơn chất", có nghĩa là không bị phân chia nữa. Song vào ngày 6/1/1781, Darwin dã viết thêm vào bức thư gửi cho Watt xin lỡi về sự vắng mặt trong cuộc gạ̣p gơ tiếp theo của "Lunar": tơi có thể tiét lộ cho các bạn vài bí mật... rằng nước được hợp thành từ một khi thuộc nước mà khí bị lấn chỗ từ "đất" (muội) của nó bởi loại dầu vitriol". Diều này với chúng ta có vẻ khó hiểu song điều mà Darwin nói chính là: nước không phải là một nguyên tố; một thành phần của nước là một chất khí và khí này là hidro.

Sau đó trong vòng một, hai tháng, để "làm vui" cho nhóm bạn "Lunar", Priestley bắt đầu các thực nghiện nguy hiểm sử dụng tia lửa diện làm nổ hổn hợp hiđ̛o và không khí trong một bình thủy tinh. Kết quả: bình trở mên mù sương, đầy hơi nước. Diều này dẫn tới cuộc tranh luận kéo dài vล̄̀ nước giữa Watt, Cavendish và Lavoisier. Darwin không tham gia vào cuộc tranh luận song lá thư của Darwin thực sự là ngòi nổ ban đầu. Với các thực nghiệm về sự cháy của chất trong "không khí lửa" (như Scheele gọi) hay "không khí đã loại nhấn tố" (như Priestley gọi) mà Lavoisier đặt tên là oxi (Oxigenium - chất sinh ra axit), nām 1783, Lavoisier đã chứng minh được bản chất phức tạp của nước: chính là "chất oxit" của "không khí cháy" (tức hiđro). Chính Darwin đã đưa quan điểm hiện đại của Lavoisier vào The Botanic garden: oxi "kết hôn" với hiđ̛o để tạo ra nước. Cũng trong tác phẩm này, Darwin tuyên bố ràng "nước gồm 85 phần khối lượng oxi và 15 phần khối lượng hidro". Những từ hiđđro, nito, "thuộc nitơ"... cũng dược giới thiệu
với công chúng Anh. Những từ này có thể đã được một vài cuốn sảch trước đó đề cập tới song chi với The Botanic garden, cồng chúng mới thực sự chú ý tới. Người ta nói, Darwin chính là người cha truyền miệng của oxi và hiđro.

Khả năng hiểu thấu hơa học của Darwin không chỉ dừng lại ở đây. Trong bản luận án về đời sống thực vật Phytologia (1800) Darwin miêu tả quá trình quang hợp tốt hơn bất ki ai trước đó, rằng khí cacbonic (thời đó gọi là "không khí liên kết") và nước với sự có mặt của ánh sáng mặt trời kết hợp lại đé tạo thành đường và khí oxi được tỏa ra.

Vai trò là chất xúc tác của Darwin trong lịch sử tiến hơa hóa học cũng như sự quen biết mật thiết của ông với ba nhà hơa học Anh hàng đầu không phải là điều đáng ngạc nhiên. Dù ông đứng bên ngoài hớa học song khả nāng nhìn thấu và sự uyên thâm của ông vè khoa học tạo cho ông óc phán đoán khoa học tuyệt vời hơn nhiều chuyên gia tận tấm khác.

30- Lịch sư dặt tên các nguyên tố

1. Vàng- Autum (Latinh) - bình minh vàng.
2. Bạc- Argentum (Latinh) - sáng bóng.
3. Thiếc- Stanum (Latinh) - dễ nóng chảy.
4. Thủy ngân- Hydrargyrum (Latinh)- nước bạc.

- Mercury (Angloxacxong cổ) hay Mercure (Pháp)-sao Thủy, thần Tín Sứ hay Thương mại - chạy rất nhanh.

5. Chì- Plumbum- nặng.
6. Stibi- Stibium (Latinh)- dấu vết để lại.

- Antimoine (Pháp)- phản lại, thày tu.

7. Kẽm- Seng (Ba Tư)-Zinke (Đức)- đá.
8. Asen- Zarnick (Ba Tu)- màu vàng.

- Arsenikos (Hi Lạp)- giống đực.

9. Hiđ̛o- Hydrogene (Latinh). sinh ra nước.
10. Oxi- Oxygen- Oksysgen (Latinh)- sinh ra axit.
11. Brom. Bromos (Latinh)- hơi thối
12. Agon- A-ergon (Latinh). không phản ứng.
13. Rađium- Rađi, Rađon- tia.
14. Iot- Ioeides - màu tim.
15. Iriđi- Iris - cầu vồng.
16. Xesi- Cerius - màu xanh da trời.
17. Tali- Thallos - xanh lục.
18. Nito- Azot (Hi Lạp)- không duy trì sự sóng.

- Nitrogenium- sinh ra diêm tiêu.

19. Heli- Trời.
20. Te - Dất.
21. Selen- Mặt Trăng.
22. Xeri- Cérium- sao Thần Nông.
23. Urani- sao Thiên Vương.
24. Neptuni- sao Hải Vưong.
25. Plutoni- sao Diêm Vương.
26. Vanađi- Nữ thần Vanadis của Scandinavia.
27. Titan- tên thần Titan.
28. Ruteni- (Latinh)- tên cớ nước Nga.
29. Gali- (Latinh)- tên cớ nước Pháp.
30. Gemani- Germany- tên nước Dức.

31- Curi- nhà bác học Marie Curie.
32. Menđelevi- nhà bác học Menđeleev.
33. Nobeli- nhà bác học Nobel.
34. Fecmi- nhà bác học Fermi.

35- Lorenxi- nhà bác học Lorentz.
36. Lantan- (Hi Lap̣)- sống ẩn náu.
37. Neođim- (Hi Lạp) - anh em sinh đôi của Lantan.
38. Prazeodim- (Hi Lạp)- anh em sinh đôi xanh.

- 翟年t ploo

Một thương nhân đáng kính của thành phố Hamburg là Brand cùng các nhà già kim thuật đương thời tin chác chán rà̀ng trên thế giới có "hòn đá triết lí" mà có nó thì có thể biến bất kì kim loại "xấu" nào thành vàng, thậm chí tiêu trừ bách bệnh, cải lão hoàn đồng. Ông Brand nghĩ rà̀ng phương pháp chế thứ "đá triết lí" đó rất đơn giản là chỉ cần nung nóng thứ vật chất trong đó có chứa đá triết lí là được. Nhưng rủi thay, chưa một ai nhìn thấy vật chất chứa "đá triết lí" cũng như bản thân "đá triết lí" như thế nào. Brand lánh mình trong hầm tối và buồn thảm, đốt lò và tìm cách rút "đá triết lí" từ tất cả những gì mà ông ta có trong tay, nhưng không thành công.

Một hôm, khi bóp đầu suy nghĩ về vấn đề còn có những vật gì có che dấu "đá triết lí" thì Brand nghĩ đến nước tiểu! Ông ta bèn nấu bay hơi nước tiểu rồi nung khô chất rấn còn lại. Thình lình bình chứa đ̛ây một thứ khối lấp lánh phát sáng kì lạ. Sau khi làm lạnh bỉnh đựng, Brand thu được một miếng chất giống như sáp; trong bóng tối, chất này phát ra những tia màu xanh nhạt tương đối sáng, sờ vào đó ta có cảm giác lạnh. Brand đã tìn thắy nguyền tớ photpho mà Viện sĩ Phexman gọi là "nguyên tố của sự sống và tư tưởng".

- Bito

Chuyện bất đầu xảy ra khi một chiếc giếng ở thành phố Tuscan nước Ý nhất định không cho nước theo bơm lên mặt đất sau khi nước giếng đã rút xuống một mực nào đó.

Diều gì khiến nước đang ngoan ngoãn đi vào óng bơm khi kéo pittông theo hiện tượng "thiên nhiên sọ hãi chân không" đó lại dừng lại? Torricelli - người họe trò tré tuổi của nhà tự nhiên học vĩ đại Galilei- sau khi xem xét, đã trả lời rằng: đó là do trọng lượng của không khi! Lời giải đáp đó tuy không giúp cho các kĩ sư thời đớ, song lại hợp với chân lí khoa học. Chính vì chiều sâu của cái giếng vượt quá độ cao mà áp suất khí quyển có thể dồn nước lên tới đự̛̣c trong ơng bơm, nên bơm ngừng lại.

Không khí như vậy có trọng lượng! Vậy tính chất hơa học của không khí thế nào? Nhà bác học kiêm nhà họa sî, nhà tư tưởng vi đại Y Leonardo da Vinci đã làm một thi nghiệm: Dốt nến trong một chiéc bình dốc ngược miệng dìm trong nước. Kết quả là nước dâng lên trong bình và dừng lại khi cây nến tắt. Phần khí còn lại trong bình đã làm chết ngạt các con chuột và làm tát các ngọn nến cháy.

Phần khí này sau khi tách hết phần "khí rừng" (tức CO_{2}) bằng nước vôi trong, thi còn lại một chất khí thật quan trọng, đó là nitơ - với cái tên azot tức "không duy trì sự sóng". Tuy là "azot" song nếu như không khí không có azot-nitơ thì con người cũng không sống được.

Vâng, chuyện bắt đầu từ cái giếng đào ả thành phớ Tuscan nước Ý xa xôii...

- 解1〕ôm

Người ta có kể lại rà̀ng gần 2000 nãm về trước, Hoàng đe̛ La Mã Tiberius đã được một người thọ dâng tặng một cái chén
làm từ mợt kim loại lấp lánh như bạc nhưng lại rất nhẹ lấy từ đất sét nung. Sọ rà̀ng thứ kim loại mới này - với những tính chất tuyệt vời của nơ - sẽ làm mất hết giá trị của đống vàng bạc trong kho nên Tiberius đã ra lệnh chém đầu người phát minh và phá tan xưởng của anh ta, để chẩng còn ai dám sản xuất thứ kim loại "nguy hiểm ấy nũa!".

Mãi đến thế kỷ XVI - gần 1500 năm sau đó, nhà bác học Paracelsus xác định được vết tich của kim loại "nguy hiểm" này trong dất phèn. Vài chục nảm sau nữa nhà bác học Berzelius và Humphry Davy đã đặt tên cho kim loại này là Aluminium - Nhôm!

Năm 1827, nhà bác học Dức Friedrich Wöhler đã công bố phát minh điều chế ra nhôm tuy mới chi thu được dạng hạt có độ lớn không bà̀ng... đầu kim băng. 18 năm liên tục sau, ông mới điều ché được nhôm ở dạng khối đặc.

Từ khi điễu chế được nhôm - năm 1827 đến năm 1886 là năm mà cả hai nhà Hall (Mỹ) và Héroult (Phápi diều chế sản xuất được nhôm hàng loạt thì nhôm vẫn được coi là kim loại quý, thậm chí còn hơn cả vàng bạc! Dến mức mà nếu như ở châu Ảu có vị Quốc vương nào sám riêng cho mình một bộ hoàng bào đính cúc nhôm thì ông ta liền vênh mặt với các vua chúa khác mà món xa xỉ như vậy không hợp với túi tiền của họ.

Còn Napoleon III đã có lần làm nhiều người khách ức đến phát khóc và chả̉ng ăn uống được gì vì những người khách đó không được dùng dụng cụ ăn uống như thìa và dia bà̀ng nhôm.

Menđeleev, nãm 1889, đã được xứ sờ Vương quốc sương mù tặng một món quà quý để thừa nhận công lao xuất sấc của ông với hơa học: một chiếc cân làm bằng vàng và nhôm...

Hơn 100 năm sau, nhôm đã không còn là kim loại quý với những người thợ kim hoàn nữa, soong với công nghiệp, dặc biệt công nghiệp chế tạo máy, công nghiệp ôtô, hàng không thì lại vô cùng yêu mến nhôm vì những tính chất ưu việt của nhôm và bởi
vì giá thành rẻ nữa: nhôm lại được lẫy từ đất sét!

- Gát

Chuyện gì sê xảy ra khi Trái Đắt thiếu váng nguyên tố ấy? "Các đường phố sẽ lâm vào cảnh hoang tàn khùng khiệp: dừng hòng thấy một ngôi nhà cao tầng nào, không có đường ray, toa xe, đầu máy xe lửa, ôtó... thậm chí đá lát đường cũng biến thành dất bự; còn cây cỏ sẽ khô héo và tàn lụi vì... không có kim loại rất cần cho sự sóng này!".

Cực sất được tìm thấy đầu tiên từ thời thượng cở có nguồn gốc vũ trụ: chưng có trong các khối thiên thạch. Diễu này cho thấy không phải ngẫu nhiên mà một số ngôn ngữ cở xua, sát có tên là "đá trời". Mổi năm, hàng ngàn tấn thiên thạch chứa đến 90% sát rơi xuống Quá Dắt mà tảng lớn nhất từ trước tới nay có tên là Goba nậng khoảng 60 tán.

Nhưng các thiên thạch lại không rơi xuống theo "đơn đặt hàng" của Trái Dất, mà nhu cầu về sát lại là thường xuyên. Vậy là con ngườ đã phải đi tìm sất ơ chinh noi mình đặt chân lên, trong các mó.

Ki thuật tìm quặng sất thời xưa thật là kì lạ và bí ẩn so với ngày nay: Người ta phải dùng cành cây "thần kì" là một cành hồ đào mành mai có cái chạc ở đa̛u. Nếu như mọi quy tác cần thiết như phải cầm đầu hai chạc, nám chặt tay với các ngón tay luôn luôn hướng lên trời (?) được tuân thủ thì ơ nơi có quạ̣ng sát, cành cây sẽ cụp xuống chì nơi có quặng!.

Chưa có kim loại nào mà lịch sử nền văn minh lại gán bó mật thiết với nơ đến thế. Thòi cớ xưa, một số dân tộc đã quý sát hơn vàng: chỉ có nhà quyền quý mới được đeo đờ trang sức bằng sát trong gọng vàng. Achilles, người anh hùng trong cuộc chiến tranh thành Troy trong thiên anh hùng ca Iliad của Homer dã
từng được thưởng chiếc đĩa bà̀ng sất là gì! Vua Sargon đệ nhị xứ Assyria hùng mạnh hồi cuối thế ki VIII (trước công nguyên) đã tích trữ khoảng 200 tá̛n sản phẩm khác nhau làm bằng sắt, phòng ngày mạt vận.

Truyện cổ tích Việt Nam cũng có truyện anh tiều phu nhất định chỉ xin lại chiếc búa sất của mình chứ không chịu nhận chiếc búa vàng, bạc từ tay Bụt.

Gần 2000 nām trước đây, nhà bác học cổ kiêm nhà vãn La Mã Pliny Bố đã viết về sắt thế này: "Các mỏ sắt cung cấp cho con người những công cụ ưu việt nhất và tai ác nhất. Các công cụ này giúp ta cày xới đất đai, trồng trọt, xây dựng nhà cửa, đục đẽo đá... Song người ta lại chửi bới, đánh đập, cướp bớc lẫn nhau bà̉ng chính thứ sắt ấy.

Sát không chỉ dùng để đánh gần như dao, kiếm mà còn đánh xa từ những mũi tên có đuôi bẳng lông chim từ các lố châu mai, từ các cánh tay lực lưỡng. Song phải buộc tội con người chứ không thể đở lỗi cho thiên nhiên"

Sát xâm nhập vào đời sống như vậy đớ. Nhưng chớ nghĩ rà̀ng sát chỉ tham gia vào nền công nghiệp quớc gia như luyện kim, xây dựng, ché tạo máy, giao thông vận tải, đớng tàu v.v...

Sắt còn được dùng để chế tạo những tác phẩm nghệ thuật nổi tiếng thế giới, tiêu biểu như cây cột trụ nổi tiếng thế giới dựng năm 415 ở Ấn Dộ trọng lượng 6,5 tấn, cao hơn 7 m bà̀ng sất gần như nguyên chất $(99,72 \%$) hay ngọn tháp Eiffel - nièm tự hào của người dân Pháp - cao 300 m dứng sừng sững một thế ki nay.

Theo ý kiến của các nhà bác học, tuy rà̉ng lượng sát trong vỏ Quả Dã́t là rất lớn (xấp xl 5%) nhưng sự cạn kiệt dần kho tài nguyên trong lòng đất sớm hay muộn cũng sẽ dẫn đến sự cần thiết phải tính đến chuyện khai thác các nguồn khoáng sản trong vũ trụ, mà dặc biệt là sất.

Sát đó thật sự là người lao động vî đại và mong rà̀ng luôn luôn là người bạn thân thiết của con người.

- 絁m

Nếu đi vào rừng hay trên thảo nguyên, bạn trông thấy những trảng hoa pãngxê đồng rực rũ màu sác hay những khoảnh violet tím trải rộng, tỏa hương ngào ngạt quyến rū thì đừng vì say mê cảnh vật mà quên một điều: gần đó có mỏ quặng kẽn!

Kẽm được biết 5000 nảm trước đây, song kim loại màu trấng phơn phớt xanh này - có tên là Zincum ("tráng bạc")- chỉ được luyện dạng kim loại khi các người thọ Ấn Độ và Trung Hoa ngưng tụ hơi kẽm trong các bình bà̀ng sét kín nút, không khí không lọt vào, ở thế ki V (trước cồng nguyên). Mãi vài trăm năm sau, các nước Ãu châu mới nấm được bí quyết luyện này.

Các bạn chắc hả̉n ai cũng biết câu chuyện cở tích "Nàng Bạch Tuyết và bảy chú lùn"! Các nhà hóa học cho rà̀ng có lẽ nguyên nhân khẩu phần ăn thiếu kēm gây... lùn ở các chú lùn. Dến cả lúa mì cũng chẳng muốn sống nữa nếu thiếu kẽm. Vì sao rắn độc không bị ngộ độc vì nọc của chính nơ? Cũng là nhờ kêm!

Kẽm sunfua lại được dùng đé̉ "hóa phép" thủy tinh thành ngọc bích, cẩm thạch, ngọc mát mèo hay ngọc lam. Kẽm selenua nhân tạo lại xây dựng nên nền kỉ thuật truỵ̂̀n hình laze màn hình màu sác rực rỡ có thể có diện tích vài mét vuông.

Nếu cầm trên tay các huy hiệu hay đồ mỉ nghệ có màu tươi mắt, hơi giống vàng tới mức "chỉ khác vàng ở mùi vị" thì đó chính là đồng thau-hợp kim của kẽm với đồng.

Kẽm được dùng để tạo ra dòng điện đầu tiên cho con người: pin Volta do Alessandro Volta phát minh. Nhà bác học Nga V.V. Petrov đã lần đầu tiên tạo được hồ quang điện là nhờ có bộ pin gồm 4200 tấm đồng và kẽm. Hiện nay, các loại acquy kẽm-không
khi được các nhà thiết kế ôtô điện rất ưa chuộng. Nhân đây cũng nói đến một người thợ đồng hồ ở thành ph6́ Kidderminster - Anh đã sử dụng pin Volta đạ̣c biệt để quay động cơ tí hon của tấm biển quáng cáo trong tủ kính từ... một quả chanh và hai thanh kẽm - đồng có dây dẫn ra ngoài!

Kêm cơ nhiều ứng dụng trong ngành in ấn, ghi âm và đặc biệt được ưa chuộng để chống ăn mòn cho thép.

Kẽm đang được khai thác từ nhiều nước trên thế giới, từ dưới đáy đại dương, trong lòng đất, thậm chi còn vượt ra cả Trái Đất lên tận những vì sao xa!

- 㜾ar

Xin bát đầu bà̀ng một câu chuyện đã xảy ra khá lâu rồi. Đó là vào những năm 327 (trước công nguyên) quân Hi Lạp dưới sự chỉ huy của vua Alexander xứ Macedonia tràn đến biên giới Ấn Độ thì bỗng nhiên mác bệnh nặng hàng loạt về đường tiêu hơa.

Vậy là buộc lòng Vua phải lui quân về nước, và thế là một câu hỏi đã được đặt ra: Tại sao các tướng lînh ít bị bệnh hơn dù họ đã cùng chia sẻ mọi gian lao vất vả với quân sí?

Hơn 2000 nām sau, câu hỏi này mới được trả lời: Vì binh lính đã uống nước trong cốc bằng thiếc, còn tướng lỉnh thì uống nước đựng trong cốc bằng bạc. Mà chi cần vài phần tì gam bạc hòa tan là đã khử trùng cho $1 l$ nước rồi! Thiếc thì chẳng có tính chất này.

Những đồng tiền bằng bạc đầu tiên xuất hiện vài thế ki trước công nguyên. Pliny Bố cho biết, ở La Mã cổ đại những năm 269 (trước công nguyên) đã có tiền bà̀ng bạc in hình các hoàng đế.

Bạc cunng có một vai trò quan trọng trong lịch sử nhân loại. Tuy không quy bằng vàng song cũng được dùng tạm vật đo giá trị như vàng, cũng được sử dụng làm các đồ trang sức mỉ nghệ
－mà nhiều khi những đồ trang sức này là tấm danh thiếp chứng tỏ nguồn gốc quyền quý giàu sang của người chủ．

Tên của bạc theo tiếng Latinh là＂argentum＂có nghìa là＂tráng， sáng＂．Còn người Assyria cổ xưa gọi bạc là＂kim loại của Mặt Trāng＂và coi là thứ kim loại linh thiêng như người Ai Cập tôn thờ vàng là＂kim loại của Mặt Trời＂．

Bạc dùng nhiều trong kĩ thuật nhiếp ảnh，tráng gương，ki thuật điện，vô tuyến điện do kỉ lục về ba chỉ tiêu：phản xạ ánh sáng，dẫn điện，dẫn nhiệt．

Bạc iođua lại có vai trò của người chống lại các trận bão rất cơ hiệu quả bà̀ng cách nới rộng đừǹng kính của các bức tường mây của trung tâm bão．

Bạc có thể cán ra thành lá trong suốt có chiều dày khoảng $0,00025 \mathrm{~mm}$ hay kéo dài một hạt bạc nạ̀ng 1 g dến 2 km ！

Bạc cunng là đối tượng của các cuộc cướp bóc，tìm kiếm．Biết bao nhiêu chiếc tàu đầy áp bạc đã bị đấm dưới đáy đại dương là nối ham muốn của nhiêu người đi tìm châu báu．

Song dại dương lại không sẵn lòng ban phát những của cải còn chìm dưới đáy đâu．

－※⿺尢丶ng

Ngay từ khi được tìm thấy，vàng đã được mệnh danh là＂Vua của các kim loại＂và＂kim loại của các Vua＂！Thực tế đã chứng tỏ điều đó là hoàn toàn chính xác．Lịch sử loài người đã chứng kiến bao cuộc chiến tranh đẫm máu，bao hành vi tội ác được thực hiện chỉ vì cái kim loại có màu vàng－màu của Mặt Trời－đẹp đē này．

Chính niềm đam mê vàng mà Vua Midas xứ Phrygia đã suýt bị chết đới và khát，chi vì thằn Dionysus đã ban cho vua ân huệ ＂chạm tay vào vật gì thì vật ấy hớa thành vàng lấp lánh＂．Và kết
quả là thức ân nước uống trở thành... không thể nhai được; cūng như cái bồn tấm vàng trong một hotel sang trọng của Nhật khiến nhiều ông bà phải đi tậu cả hàm răng giả vì muốn "đẽo" lấy chút vàng "làm ki niệm".

Ai Cập là nưởc được coi là giàu vàng nhất trong thẽ giới cổ đại. Các lảng tẩm, mộ của các nhà quyèn quý, các pharaong' rực rỡ trong ánh sáng vàng của đồ trang sức, của phù điêu, của đồ dùng. Nữ hoàng Semiramis xứ Assyria, theo truyè̀n thuyết, muốn được thần linh phù hộ, đã đúc một bức tượng nữ thần Rea nặng 250 tửn vàng ngự tọa trên ngai vàng cơ hai con sư tử bằng vàng to tương xứng làm "vệ sí" hai bên!

Những đồng tiền vàng đầu tiên đả xuất hiện khoảng 2500 nām trước đây tại Lydia- phia tây Tiểu A. Sau đó các nước thuộc vùng Trung, Cận Đông cũng bất đầu đưc tiền vàng - có nghĩa vàng bất đầu được sử dụng làm thước đo giá trị. Thê là vàng bát đảu được tìm đủ mọi cách để "đến phục vụ con người": nào là điều chế ra vàng từ "hòn đá triết lí" đến việc khai thác vàng, cướp bóc vàng.

Thời kì "giả kim thuật" đã kéo dài suốt từ thế kỉ thứ IV đến thế kỉ XVI khiến lịch sử hơa học là "lịch sử đi bàng đầu". Ngày nay, chỉ trong điêu kiện khoa học kĩ thuật hiện đại, vàng mới có thể được tạo thành nhờ bán phá hạt nhân của một số kīm loại nặng.

Điều chế không được vàng, thế là loài người lao đi cướp bớc vàng ở các nước châu Mĩ, đạ̣c biệt là bọn thực dân Tây Ban Nha, Bồ Dào Nha. Lịch sử còn nhớ mãi chuyện thành phố Cuzco giàu có của Peru với ngôi đền Mặt Trời Vàng bên cạnh khu vườn bằng vàng với biết bao nhiêu tác phẩm nghệ thuật văn hơa đã bị đúc thổi để chuyển về Tây Ban Nha hồi đằu những năm 30 của thé ki XVI.

Thôi, khỏi phải kể ra những ngôi dền đài, hay trọng lượng
của các bức tượng - bởi chỉ tổ gây ra lòng tham của con người mà thố! Chính vì người ta yêu quý vàng đến như vậy mà số phận của vàng thật vừa vinh quang lại vừa đau khổ như một "người tù chung thân".

Vờ kịch "Lão hà tiện" của Molière, hay Eugénie Grandet của Balzac đã mô tả về lòng tham tới tức cười của những lão già tích trữ vàng một cách mù quáng, bán rẻ cả lương tâm và tình càmchỉ vì vàng mà chẳng biết giữ vàng để làm gì'

Ngày nay, vàng - nếu là tài sản quốc gia - thì ngay lập tức, sau khi moi khỏj lòng đất đã bị con người giam cầm ngay trong các tủ sắt kiên có hay trong các hầm ngần canh giữ cẩn thận. Từ đây, vàng sẽ đi ra để đi vào các nhà máy, phòng thí nghiệm, đặc biệt là quan trọng trong việc chinh phục không gian vũ trụ, hay trong y học, nghệ thuật, v.v...

Vàng, với những tính chất ưu việt của nó, luôn luôn là đối tự̛̣ng tìm tòi, nghiên cứu; ứng dụng của mọi thời đại, và hiện nay, công việc trục vớt các con tàu đám ngoài đại dương tìm vàng vẫn đang nóng bỏng và sời động!

Và thành ngữ "Quý như vàng" vẫn rất thông dụng.

PHÀ̀N BA

HOC MÀ VUI... VUI MÀ HOC

1. Hóa ḥe la gì?

Là Hóa học-nghía là chai vói lọ
Là bình to, bình nhỏ... dủ thúu bình
Là ống dài, ống ngấn xếp linh tinh
Là ông nghiệm, bình cầu xếp bên nhau nhu hình vói bóng.

Là Hóa học nghía là làm phản úng
Cho bay hoi, ngung tu, thäng hoa
Nào là dun, gạn, lọc, trung hòa
Oxi hóa, chuả̉n dộ, kết tủa.
*
Nhà Hóa học là chấp nhận "dau khó"
Dưng run chan, tay mỏi lác, mát mò̀
Nhung tìm ra duợc triệu chất bát ngò
Khiến cuộc dòi nghiêng mình bên Hóa học.

2- Bài ca hóa trị (I)

Kali (K), iot (I), hidro (H)
Natri (Na) với bạc (Ag), clo (Cl) moột loài
Là hóa trị một (I) hõi ai
Nhó ghi cho ki khỏi hoài phân vân
Magie (Mg), kẽm (Zn) vái thủy ngân(Hg)
Oxi (O), dồng (Cu), thiéc (Sn) thêm phần bari (Ba)
Cuôi cùng thém chũ canxi (Ca)
Hóa trị II nhó có gì khó khăn!
Này nhôm (Al) hóa trị III lần
In sâu tri nhớ khi cần có ngay
Cacbon (C), silic (Si) này dây
Có hóa trí IV không ngày nào quên
Sát (Fe) kia lấm lúc hay phiền?
II, III lên xuống nhớ liền nhau thôi
Lai gạp nito (N) khó rồi
I, II III, IV khi thời lên V
Lưu huỳnh (S) lắm lúc choi khăm
Xuống II lèn VI, khi nàm thứ IV
Photpho(P) nói dến không du
Có ai hỏi đến thì, ư ràng V
Em oi cớ gáng học chăm
Bài ca hóa trị suốt nảm cần dùng.

3- Bài ca hóa trị̣ (2)

Hidro (H) cùng với liti (Li)
Natri (Na) cùng với kali (K) chà̉ng rò̀i
Ngoài ra còn bạc (Ag sáng ngài
Chí mang hóa trị I thôi chơ nhằm.
Riêng dồng. (Cu) cùng vấi thủy ngân (Hg)
Thuờng II, it I chớ phân vân gì
Dối thay II, IV là chì (Pb)
Diển hình hóa trị của chì là II
Bao giờ cùng hóa trị II
Là oxi (O), kẽm ($Z n$) cháng sai chüt gì
Ngoài ra còn có can xi (Ca)
Magie (Mg) cùng vói bari (Ba) moột nhà
$B o(B)$, nhôm (Al) thì hóa trị III
Cacbon (C), silic (Si) thiếc (Sn) là IV thôi
Thế nhung phải nói thêm lời
Hóa trị II vấn là noui đi về!
Sát (Fe) II toan tính bộn bề
Không bền nên dễ biến liền sắt $I I I$
Photpho (P) III it gạp mà
Photpho V chính nguời ta gạ̣p nhiều
Nito (N) hóa trị bao nhiêu?
I,II, III, IV phần nhiều tới V

Luu huỳnh lánz lúc chơ khăm
Khi II, lúc IV, VI tăng tột cùng
Clo (Cl), iot (I) lung tung
II, III, V, VII thuờng thi I thoii
Mangan (Mn) râc rối nhât dò̀i
Dổi tư I dến VII thời mới yên
Hóa trị II dùng rất nhiều
Hóa trị VII cüng dự̣c yêu hay cần

Bài ca hóa trị thuợc lòng
Viết thóng công thưc, dẻ phòng lãng quên
Học hành có gấng cần chuyên
Siêng ơn chăm luyện tất nhiên nhớ nhiều.

4- Natri (Na)

Dế anh kể em nghe
Chuyện mọ̣t kim loại kièm
Dă làm nên muối biển
Biên mặn mòi
Natri dã thành tên
23 là khối luợng
Mêm, tráng, nhẹ hon nuớc
Phớ biến trong tư nhiên.

Là một kim loại kiềm
Nên hoạt dộng mãnh liệt
Em oi, khó tìm kiếm
$N a$ don chất dâu!
Xút ăn da không màu
Oxit trắng dê tạo
Halogen chả̉ng khác
Phi kim-tác dung ngay
(Vâ nhớ nhé diêu này
Trie khi tro ra dấy)
Natri thật dê tính
Tạo các muôi dều tan
Họp chất nhiều vô văn
Quan trọng trong cuộc sống!

5- Cô gái Nito

Em là cô gái Nito
Tên thật Azot anh ngò làm chi
Không màu cüng chàng vị gì

- Sư cháy, sống chảng duy trì trong em.

Cho dù không giống Oxygen
Thế nhung em vẩn dịu hiền nhu ai
Nhà em \dot{o} chu kì 2
Có 5 electron ngoài bao che

Mùa dông cho tới mùa hè
Nhớ ô thứ 7 nhớ về thăm em
Bīnh thuòng em it nguò̀i quen
Nguời ta vẩn bảo... sao trầm thé cô
Cü nhu dòng họ khi tro!
Ai mà ngỏ y làm ngo sao dành
Tuơi em mười bốn xuân xanh
Vội chi tính chuyện yến anh làm gì.
Thế rồi năm tháng trôi di
Có anh bạn trẻ oxi gần nhà
Bình thuồng anh chả̉ng lân la
Nhung khi giông tố, dến nhà tìm em
Gàn lâu rồi cũng nên quen
Nito oxit (NO) sinh liên ra ngay
Không bền nên chất khi này
Bị oxi hóa liền ngay túc thì
Thêm một nguyên tư oxi $\left(\mathrm{NO}_{2}\right)$
Thên mà̀u nâu dậm, chất nào dậm hơn?
Bo vo cuộc sống cô don
Thủy tè thấy vậy bát luôn về nhà
Gọi ngay Hoàng tư Nước ($\mathrm{H}_{2} \mathrm{O}$) ra
Ghép luón chồng vọ thật là ác thay
$\left(2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HNO}_{3}+\mathrm{HNO}_{2}\right)$
Hờn dau bốc khói lên dầy
Nên tim em chịu chua cay một bè̀

Dêm giông tố rèt dêm về
Oxi chẳng dực gần kề bên em!
Vì cùng dòng ho phi kim
Cho nên cô bác hai bên bưc mînh
Oxi tù dó buôn tinh
Bỏ em dơn dộc một minh ba va
$\left(2 \mathrm{NO}=\mathrm{N}_{2}+\mathrm{O}_{2}\right)$
En là cô gái Nito
Lây nay em vẩn mong chò tình yêu.

6- Khới lựng nguyên tư

Hidro là một (1)
Muò̀i hai (12) cột Cacbon (C)
Nito (N) muaơi bốn (14) tròn
Oxi(O) trăng mườ sáu (16)
Natri (Na) hay láu táu
Nhảy tót lên hai ba (23)
Khiến Magie (Mg) gần nhà
Ngậm ngùi nhận hai bốn (24)
Hai bảy (27) Nhôm (Al) la lớn
Luu huỳnh (S) giành ba hai (32)
Khác nguồi thật là tà i
Clo (Cl) ba nhăm ritõ̃ $(35,5)$
Kali (K) thich ba chin (39)
Canxi (Ca) tiếp bốn muai (40)

Năm nhăm (55) Mangan (Mn) cıò̀i
Sát (Fe)- dây rồi: năm sáu (56)
Sáu tu (64) Đò̀ng (Cu) nơi cáu
Bỏi kénı Kẽ̃̀ (Zn) sáu nhăm (65)
(80) Tám nutoi Brom (Br) nàm

Xa Bac (Ag) một linh tán (108)
Bari buôn chán ngán (Ba)
(137) Mọt ba bay ich chi

Kém nguòi ta còn gì!
Thüy ngân (Hg) hai linh mốt (201)
Còn tơi, di sau rốt...

7- Bài ca hóa hưu co

Rü nhau di học hưu co
Máy nam công sị̛c bây giò thảnh thoi
Thuyêt cấu tạo đā thuọc rồi
Dòng phan ta cú mạ̣c dời viết ra
Máy loại mạch có đâu xa
Mạch nhánh, mạch thà̉ng, luŏn qua mạch vòng
Liên kết bội phóng long nhong
Nhóm thé cüng chạy gấn trong, dính ngoài
Đồng dả̉ng càng dê hỗi ai
Câu tạo áy CH_{2}, thêm vào
Phần gốc tính chất ra sao?
Xét liên kêt (có) phản ưng nào xảy ra.

Phản ưng thế thật khéo là
$h \nu$ - liên kết dơn ta mới "iu"
Đôi, ba liên kết thật hu
Tác nhân cộng chả̉ng chàn chừ cộng ngay.
Xòe bàn tay, dếm ngón tay
Vì̛a thế, vùu cộng, đây này gốc thom!
Ān quà cüng cháng bàng com
Thúc ăn các món phải dom dủ dây
Nhóm dịnh chức thật lám thay
OH^{-}là ruơu, O^{2-} ete
-COO- dúng este
COOH- về phe chất nào?
Axit dể nhớ làm sao!
Nhóm -CO- lại gấn vào xeton
Đặc biệt hãy nhớ phenol
Phenyl ($\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$) gắn vói góc ol diệu kì
Andehit-cacbonyl
Amin chất ấy hãy nhìn $-\stackrel{1}{N}-$
Nào tinh bột, nào xenlulozo
Protit, polime, béo, glucoza, nào dừng
Mấy chất này cũng nhớ luôn
Học thuộc, xem ki chả̉ng buồn lúc thi
Rủ nhau... Hũu co học di
Có ôn luyện kỉ àt thì nên câu:
"Công lênh chảng quản bao lâu
Ngày nay nuớc bạc, ngày sau com vàng".

8- Dãy ciện hóa (1)

K $\quad \mathrm{Na} \mathrm{Li} \mathrm{Ba} \mathrm{Ca} \mathrm{Mg} \mathrm{Al}$

Không Nói Li Biẹt Chièu Mua Ây
Mn Zn Fe Co $\mathrm{Ni} \mathrm{Sn} \quad \mathrm{Pb}$
Măt Dôi Phuong Cū Nhó Thuơng Chò
H Cu Bi Hg Ag Pt Au
Hơi Có Biéć Hay Ai Phó Váng
Chín nhớ mưò̀ thuong vào tận mo...

9- Dãy điện hơa (2)

K Na Ba Ca Mn Al Zn
Khi Nào Bạn Căn May Áo Dài
$\mathrm{Fe} \quad \mathrm{Ni} \mathrm{Sn} . \mathrm{Pb} \mathbf{H}$
Phái Nguòi Sang Phó́ Hói
$\mathrm{Cu} \mathbf{~ H g ~ A g ~ P t ~ A u ~}$
Của Hàng Á Phi Âu

10. Máy 1ời vè dãy điện hoa

Dảy diẹn hóa O sau khủ truóc ${ }^{(1)}$
Phản úng theo quy uớc ${ }^{(2)}$ anpha.

Nhung cằn phải hiéu sâu xa.
Truớc sau ý nghia mói là thành công.
Kali, Can, Nát tiên phong,
Ma, Nhôm, Man, Kẽm tiép không chịu hèn.
Sát rò̀i Cô dến Niken,
Thiéc, Chì dả̉u chạm cüng lièn theo chân.
Hidrô, Dồng, Bạc, Thủy ngân,
Bạch kim, Vàng nûa chịu phần dứng sau.
Ba kim mạnh nhát ơ dầu,
Vao dung dịch muói nưóc dâu "hủy liên".
Khi bay, muói lại gạ̀p kiềm,
Dối trao phản úng là quyền chúng thôi.
Các kim loại khác dê rồi,
Vào dung dịch nuới, truóc thòi dáy sau.
Vói axit, nhớ bảo nhau:
Khử được hát cộng (H^{+}, phải dâu dề dàng.
Tư Đồng cho dến cuới hàng,
Sau Hidrô dấy, chảng tan chút nào.
Vá lò̀ bàn bạc dối trao,
Vun cây "Vuờn Hóa" vui nào vui hon.
(1) $\mathrm{K}^{+} \mathrm{Ca}^{2+} \mathrm{Na}^{+} \mathrm{Mg}^{2+} \mathrm{Al}^{3+} \mathrm{Mn}^{2+} \mathrm{Zn}^{2+} \mathrm{Cr}^{3+} \mathrm{Fe}^{2+} \mathrm{Co}^{2+}$
$\begin{array}{lllllllll}\overline{\mathrm{K}} & \overline{\mathrm{Ca}} & \overline{\mathrm{Na}} & \overline{\mathrm{Mg}} & \overline{\mathrm{Al}} & \overline{\mathrm{Mn}} & \overline{\mathrm{Zn}} & \overline{\mathrm{Cr}} & \overline{\mathrm{Fe}}\end{array} \overline{\mathrm{Co}}$
Kia cô Nàng mày nhó mi dài càm sá́t có
$\mathrm{Ni}^{2+} \mathrm{Sn}^{2+} \mathrm{Pb}^{2+} \mathrm{H}^{+} \quad \mathrm{Cu}^{2+} \mathrm{Ag}^{+} \quad \mathrm{Hg}^{2+} \mathrm{Pt}^{++} \mathrm{Au}^{3+}$
$\begin{array}{llllllll}\overline{\mathrm{Ni}} & \overline{\mathrm{Sn}} & \overline{\mathrm{Pb}} & \overline{\mathrm{H}}_{2} & \overline{\mathrm{Cu}} & \overline{\mathrm{Ag}} & \overline{\mathrm{Hg}} & \overline{\mathrm{Pt}}\end{array} \overline{\mathrm{Au}}$
nõ sao phá hủy cù̀ng (ai) bac (lòng) thùy phụ tình vàng.
Kim loại trước có tính khử mạnh hơn kim loại sau, cation sau có tính oxi hoóa mạnh hơn cation trước.
(2) Hay quy tác anpha (a), thí dụ xét hai cặp:

có phản ứng: $\mathrm{Cu}^{2+}+\mathrm{Fe}=\mathrm{Fe}^{2+}+\mathrm{Cu}$
Nếu xếp theo cột dọc:

sẽ nói là theo quy tắc gamma ($\%$).

11. Tính tan cua muói

Loại muối tan tất cả
là. nıuối ni-to-rat
Va muói a-xè-tat
Bât kê kim loại nào *

Những muối hầu hết tan
Là clorua, sunfat
Trù̀ bạc, chì clorua
Bari, chì sunfat
*
Nhüng muối khơng hòa tan
Cacbonat, photphat
Sunfua và sunfit
Trì̀ kiềm, amoni (*)
(*) Muối của các kim loại kiềm và muối amoni.

12. Benzen

Benzen là hợ chất vòng
Dễ thế, khó cộng anh không nhớ à
Oxí hóa - khự khó mà
Tính chất hóa dó gọi là tính thomr.

13 - Dãy dông cầng cù metan

E-2, bu-4, pro-3
Ben-5, hex - 6, bảy là heptan
Thú 8 tên gọi octan
Nonan thú 9 , decanz thú 10.

14 - Thắc mắc

Minh về ta cháng cho vê
Ta nắm vạt áo ta dề câu tho
Nuớc non luống nhũng dọi chờ
Bari sunfat bao giờ cho tan
Mînh về hỏi xóm, hỏi làng
Chất nào có thể hòa tan chất này
Mình về xa bạn, xa thày
Ta hòi câu này mình có biết chăng
Ràng theo tỉ lệ phần trăm
Nito nhiều nhất ở trong chất nào

Danh pháp thường gọi ra sao
Ò trạng thái nào rấn, lỏng, bay hoi
Chiều hôm dã xế mạ̣t tròi
Ta buông vạt áo minh oi ta về
Lòng ta thác nuác trăm bề
Mình viết lò̀ giải gửi về cho ta.
(St.)

- fitấy lài giải dáp

Ra về luống nhũng bồi hồi
Ta viết dôi lờ, ai khỏi vẩn va...
Nuóc non xin chớ dọi chò
Bari sunfat bây giò dā tan
Ta về hỏi xóm, hỏi làng
Meta photphat hòa tan muối này
Phươg trình phản úng sau dây (1)
Cùng nhau trao dởi, dấy dây ven toàn
Chất nào rò̀i cūng phải tan
Chỉ tình yêu với thò̀i gian vính hầng!
Ta về mình dã biết chăng?
Nito nhiều nhất ở trong chất này:
Azothidric (HN_{3}) mùi cay,
Là một chất lỏng chúa dầy hiểm nguy
Khi va chạm nổ túc thì,
Lai còn tính dộc liệu bề mà trông

Mấy lời nhắn gửi tri âm
Hẹn nhau gạ̣p lại, ngày xuân còn dài...
(St.)
(1) $\mathrm{Na}_{6} \mathrm{P}_{6} \mathrm{O}_{18}+\underset{\text { (rắn) }}{\mathrm{BaSO}_{4}}=\underset{(\text { tan })}{\mathrm{Na}_{4}} \underset{\mathrm{BaP}_{6}}{\left[\mathrm{BaO}_{18}\right]}+\underset{\text { (tan) }}{\mathrm{Na}_{2} \mathrm{SO}_{4}}$

Natri hexametaphotphat + bari sunfat =
$=$ natri bari hexametaphotphat + natri sunfat.
HPO_{3} axit metaphotphoric
NaPO_{3} natri metaphotphat
$\left(\mathrm{NaPO}_{3}\right)_{6}$ hay $\mathrm{Na}_{6} \mathrm{P}_{6} \mathrm{O}_{18}$ natri hexametaphotphat
Để hòa tan BaSO_{4} cuñg có thể dùng chất tạo phức tên là axit etilen điaminotetraaxetic. viết tát là EDTA. Công thức cấu tạo:

Khi cho dung dịch EDTA trong kiềm (1:2) vào BaSO_{4} xảy ra quá trình:

$$
\underset{(\text { (răn })}{\mathrm{BaSO}_{4}}+\left(\mathrm{EDTA}+2 \mathrm{OH}^{-}\right) \rightarrow \underset{(\tan)}{(\mathrm{BaY})}+\mathrm{SO}_{4}^{2-}
$$

Phức có dạng:

15 - Chất gi?

Chất gì khi hit phải
Ai cūng clơòi sặc sụa
Chất gì mới ngừi thôi
Nuớc mắt nguò̀i giàn giụa
Khó gì dâu anh oi
Chất gày ra su khóc
Benzyl clorua hoi ($\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{Cl}$)
Va chát gây su cuời
Dinito oxit ($\mathrm{N}_{2} \mathrm{O}$)

16. Khí gì?

1. Khi gì có tinh dộc,

Là thành phằn khi than
Vẩn thường dực ừng dưng
Trong ngành luyện thép gang?
2. Khi gì có tên gọi

Tư Mạt Trò̀i mà ra?
Khi hiếm nhung chàng thiếu
Trong vü tru bao la.
3. Khi gì mang tên nuớc

Ơ khu vực Á châu?
Cao su a̛uợ tống họp
Tùu khi dó khơi dầu.
4. Khi gì tan trong nuóc

Ān mòn duợc thủy tinh?
Dung dịch có úng dụng
Để khắc chũ, khá́c hình.
5. Khi gi mà phân tư

Có mối liên kết dôi,
Một chút dùng kich thich
Quả xanh dã chin rồi?
6. Khí gi muốn bảo quản

Phải dậy kín náp bình?
Vì hễ ná́p bật mơ
Là khí khác hình thành.
7. Khi gì mà dung dịch

Có tinh chất khủ trùng
Tráng guang cho nhiều bac
Nhung lại it duợ dùng?
8. Khí gì dem phoi nắng

Cùng một lượng khi clo.
Phản ûng xảy ra mạnh
Kèm theo tiếng nố to?
9. Khi gì ai không biêt

Tuởng là anh ma trai
Bập bùng ngoài nghia dịa
Vâo nhüng dêm tối trò̀i?
10. Khí gì gạp nuớc nóng

Có phản úng tức thi
Tạo ra một chất mới, Giải phóng khi oxi?
11. Khi gì làm vũ khí

Trong cuộc đại chiến tranh?
Ché tù hai khi khác,
Gây ngạt thơ rât nhanh.
12. Khi gi thường có mạ̣t

Trong các bóng dèn tròn,
Dûng lâu vẩn chả̉ng sơ
Dây tóc bị hao mòn?
13. Khi gì hấp thu dược

Tia tư ngoại mặt trò̀i?
Là lá chán hữu hiệu
Cho sư sống sinh sôi.
14. Khi gì một hợp chât

Thuộc ho olefin
Là nguyên liệu tưng họp
Sản phẩm glixerin.
15. Hai khi gì khác loại

Gạ̃p là nhận ra nhau,
Vui mùng tay nám chặt
Tỏa làn khói tráng phau?
16. Hai khi gì cùng me

Thái tính ngay tù dầu,
Gạ̣p đâu là sinh su
Không chung sống dự̛̣c lâu?

- Giải dáp

1. CO ; 2. He; 3. Butađien; 4. HF; 5. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$; 6. NO; 7. HCHO (andehit fomic); 8. $\mathrm{CH}_{4} ; \mathbf{9} . \mathrm{PH}_{3} ; \mathbf{1 0} .2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{HF}+\mathrm{O}_{2}$. 11. Photgen $\mathrm{COCl}_{2}: \mathrm{CO}+\mathrm{Cl}_{2}=\mathrm{COCl}_{2} ;$ 12. $\mathrm{N}_{2} ;$ 13. O_{3};
2. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3} ;$ 15. HCl và NH_{3}; 16. H_{2} và O_{2}.

17 - Axit gì?

1. Axit gì nhận biết

Bàng quỳ tím dổi màu
Thêm vào bac nitrat
Tạo kết tủa tráng phau.
2. Axit gì cùng sắt

Tạo muối sắt hai, ba
Tùy diêu kiện dung dịch
Còn làm sát tro ra.
3. Axit gì làm tan

Cả kim loại bạc, dồng...
Phi kim photpho, than...
Dù dung dịch dậm, nhạt.
4. Axit gi không bền

Có tên, không tháy mặt
Điều chế muối cho kiềm
Cùng oxit tuong tác.
5. Axit gì có tên

Thông thương thì không gọi
Tinh chất bạn dùng quên
Là axit rất yếu!
6. Axit gì mà... béo

Không no nũa mới hay
Thủy phân dầu vù̀ng, lạc...
Thu duợc axit này.
7. Axit gì em nhó
$B a$ anh lón cùng chị
Thân mang clo nguyên tưu
Hon, kém một oxi?
8. Axit gì tan nhiêu

Tinh axit, tinh khiu
Cả hai cùng manh dều
So nhüng chầt cùng họ?
9. Axit gì thuốc nó

Lại còn diêu lạ hon:
Có thế diều chế nó
Tü hơp chất tinh thom.
10. Axit gì hai làn

Tan trong nuớc một it
Diện li chỉ một phần
Lai là chất khí dộc.
11. Axit gì da chúc

Có trong nuớc quả chanh

Vắt ra thêm đuờng ngọt
Uống giải khát ngon lành.
12. Axit gì tinh the

Dun nóng lại chuyển mình
Loại dần phân tử nước
Đổi sang dạng thủy tinh.
13. Axit gì gốc no

Phân tử hai nhóm chúc
Ûng dung diều chế to
Trùng ngung cùng chất khác.
14. Axit gì dứng dầu

Trong dãy chất dồng dảng
Có trong kiến vàng nâu
Đốt dau ran buốt nóng.
15. Axit gì dầu bảng

Phân hủy dần lúc khan
Nên cần dược bảo quản
Bó vào nuớc cho tan.
16. Axit gì bạn oi

Lên men tư ruợu nhạt
Thiếu nó xin dừng mời
Nhüng món ngon: nem, chả.

理áp lò̀i antj joỏi

Cám on anh höi vè axit
Enı trả lòi xenı biêt dến dâu

1. Clohidric kể à̛u

Nó làm quỳ tím chuyển màu, dó anh
Bac nitrat kết tủa nhanh
Tráng phau, bộ trắng, hiền lành thé thôi.
2. Sunfuric khi mà nguọi, dặc

Sát cho vào cũng muç, tro ra
Lưc dặc, nóng tạo sát ba (III)
Còn khi pha loãng lại là sắt hai (II).
3. Tiép theo nitric thật tà i

Khi dùng cẩn thận kẻo "ai" bị phièn
Dồng thả vào bị tan liền
Lutu huỳnh, than cüng chä̉ng yên chút nào.
4. Cacbonic lại không bền

Áy là axit có tên, không hình
Muốn điều chế muối lấy kiềm
Hấp thu oxit sē liën thành công.
5. Axit có tên it dùng

Vì chúng rất yếu nên không tủi buồn
Thông thuờng vẫn goi phenol
Axit phenic "tên cúng com" xua ròi.
6. Oleic béo... không no

Dầu vừng, dầu lạc... sẽ cho chát này

Thủy phân phản úng... kiềm dây
Rồi proton hóa muối ngay, mới thành.
7. Oxi axit thua anh

Bốn chàng một dãy thuộc ngành clo
Em uit tiền tố hipo
Cüng tên anh kế clono di kèm.
$\left(\mathrm{HClO}, \mathrm{HClO}_{2}, \mathrm{HClO}_{3}, \mathrm{HClO}_{4}\right)$
8. Xét trong họ halogen

Hidro axit ta dem so tài
Tinh axit manh, khư oai.
Iot hidric chả̉ng sai có dều.
9. Axit thuốc nổ ở dâu

Họ "thom" phải nhớ, mạ̣c dầu chảng thom
Điều ché duọc tù phenol
Tên picric anh còn hỏi chäng.
10. Khí dộc axit hai lân

Trong nuớc tan it, một phần diện li
Sunfuhidric chúu gì
Trưng ung mùi thối ta thì không quên.
11. Axit xitric dễ tim

Ba chức axit lại thêm rựu cùng
Nước đuờng thêm chút giọt chanh
Mùa hè giải khát ngon lành lán thay.
12. Octophotphoric dây

Tinh thẻ trong suốt có ngày nuớc di

Chuyên piro dạng khùu nhì
Meta dạng cuối khác gì thủy tinh.
13. Adipic mang trong minh

Gốc no, hai chức dể dành chế to
Diamin vẫn đọi chò
Dồng trùng ngung dấy, nên tho muôn đời.
14. Khoảng ba thé kỉ nay rò̀i

Dă biết fomic trong loài kiến nâu
(Trong dãy dồng dảng dúng dầu)
Kiến dốt nọc ngấm buót dau ran người.
15. Pecloric hãi anh oi

Axit mạnh nhất em thòi chua quên
Bảo quản trong nưóc cho tan
Đạ̣c nóng dế nố, khi khan hủy dần.
16. Men giấm thoáng rộng ra quân

Ché axetic tư phần ruọu non
Làm cho nem, chả thom ngon
Vị chua hấp dẩn mùi thơm chào mời.

18 - Muб́i gì???

1. Muối gì nghe lạ thế

Mang tên nguời phát minh
Đóng góp cho nhân loại
Biét bao nhiêu công trình?
2. Muối gì khi tinh ché

Không thé dem kết tinh
Va khi bạn cô cạn
Không khéo nổ tan bình?
3. Muối gi làm bột nơ

Den trộn lân bột nhào
Trong sản xuất bánh xốp
Bánh phồng tôm, bánh bao?
4. Muối gì tinh thể trắng

Vị "ngọt, mặn, mát thay" (*)
Khi cho vào thưc phẩm
Ān giòn, dai hay hay.
5. Muối gì cho thưc phả̉n

Vị ngọt có nhiệm màu
Song chớ nên lậm dụng
"Hội chứng tiệm ăn Tau".
6. Muối gì làm thuốc súng

Súc công phá phi thường
Nhung các bà nội trọ
Lai dùng làm lap xuờng.
7. Muối gì sác tim dầm

Pha loãng có màu hồng
Ta thừng ngâm rau sống
Rưa vết thuơng, sát trùng.
8. Muối gì dùng tẩy tráng

Mang nặng mùu clo
Bảo quản nơi râm mạ́t
Mong bạn hãy nhớ cho.
9. Muối gì nhờn nhu sáp

Dóng bánh gọi xà phòng

Xıa dùng dể giạt rưa
Nhung ngày này it düng.
10. Muối gi dùng tẩy uế

Khu chuồng trại chăn nuôi
Tả̉y vải cho thật tráng
Trửc khi nhuộm màu tuoi.
11. Muối gi chua lại chát

Biến nước dục thành trong
Làm giáy thêm láng bóng
Giưp cán màu cả̉i bông.
12. Muối gì làm thuốc pháo

Nớ vang ngày hội vui
Muốn màu lựa xanh dỏ...
Thêm muối gì bạn oi.
13. Muói gì dùng làm thuốc

Chưa bệnh dau da dày
Nhiëu khi con dau quặn
Uống muối này hết ngay.
14. Muối gì khi bị thiếu

Với lượng cháng là bao
Mà gây bệnh bướu cố
Noi xa biên, vùng cao.
15. Muối gì trị măt dau

Khi mùua hè nóng nục
Nhỏ mát bàng dung dịch
Pha loăng năm phần trăm.
16. Muối gì tan trong nuớc

Gây dộ cứng tạm thòi
Khù nó rất dơn giản
Chỉ cần dun nưóc sōi.
17. Muối gì làm nuớc cứng

Muốn khư hay dùng vôi
Gây dộ cúng vīnh cửu
Tác hại gì bạn oi.
18. Muới gì ó dạng quặng

Công dung chả̉ng gi bàng
Xây nên nhà ta ó
Va sản xuất ximãng.
19. Muối gí lànz ra xut

Nhung cần nhất khi ăn
Tạo sôda: phuong pháp
Gấn với tên LeBlanc.
20. Muối gì dùng dả́p tuợng

Làm phấn và dúc khuôn
Cháng may ta truột ngã
Bó bột khi gây xuong.
21. Muối gì mà dắt thé

Chuyên düng dế tráng glương
Nhò anoniac
Hoạc nhờ dung dịch dường.
22. Muối gì làm thuốc ảnh

Trang lên mặt cuọn phim
Dươi tác dụng ánh sáng
Dang trá́ng hóa thành den.
23. Muối gì dễ phân hủy

Nhờ nhiệt dộ hồ quang
Giải phông ra axit
Tả̉y gi cho mối hàn.
24. Muới gì chống cá mập

Khi lặn xuống biển sâu
Ngưi mùi chúng khiếp sọ
Va chạy trốn cho mau.
25. Muối gì làm bả chuột

Chuột ăn rồi uống nước
Khi dộc phát sinh ngay
Truong bung chết lăn quay.
26. Muối gì chế oxi

Ò trong phòng thi nghiệm
Là những chất dề kiền
Có bán trên thi truờng.
27. Muối gì có tính dộc

Nguy hiểm dến chết nguò̀i
Dồi khi so suất nhỏ
Trả giá bàng cuộc dời.
28. Muối gì cùng tinh bột

Tư không màu thành xanh
Ta dùng dể nhận biết
Khi ozon tạo thành.
29. Muói gì chống còi xưong

Khi trẻ nhỏ chậm lớn
Luyện thành nhũng hạt cốm
Màu trắng tinh, ngon lành.
30. Muối gì gọi "bột nhẹ"

Thuờng düng làm phu gia
Cho cao su, duợc phẩn
Kem dánh răng trong nhà.
31. Muối gi làm dồ bạc

Dể ngoài trò̀ lâu ngày
Bề mặt bi xin lại
Rửa axit, hết ngay.
32. Muối gì tạo váng cúng

Trên nıặt nước hố vôi
Dàn kiến qua lại duọc
Với bỏ lại sinh sôi.
33. Muối gì dóng thành cặn

Trong ấm nuớc dun sôi
Tạo thành nhũ hang dồng
Cảnh thiên nhiên tuyệt vời.
34. Muối gì chống nấm bệnh

Cho cà chua, khoai tây
Khi dông về giá lạnh
Giảm năng suất của cây.
35. Muối gì mà khi bón

Cày bốc lên rất nhanh
Nhung dé̉ gần bếp lửa
Nó sê nổ tan tành.
36. Muối gì rất quen thuộc

Sản xuất ở Lâm Thao
Bón lúa thòi sinh truơng
Mang lại năng suât cao.
37. Muối gì phân phức hợp

Chúa nito, phot pho
Cây lớn nhanh, khỏe mậh
Trái nhiều và củ to.
38. Muối gì chứa ka li

Giúp cho cây chịu hạn
Tăng cuờng hấp thu dạm
Tạo ra nhiều bột duơng.
39. Muối gi trong con mua

Hình thành nhò tia chớp
Làm lúa chiêm phất cờ
Khi lấp ló dầu bờ.
40. Muối gi bạn dã học

Trong chuong trình phổ thông
Nhường hoạc nhận proton
Nên gọi là luãng tính.
41. Muối gì rất cần thiết

Cho àn uống hàng ngày'
Trộn thêm muö́i nào nũa
Buớu cổ sẽ khỏi ngay.
42. Muối gì trộn với xut

Va xúc tác là vôi
Dem dun lên một lát
Metan thoát ra rồi.
43. Muối gì ngậm hai nước ($2 \mathrm{H}_{2} \mathrm{O}$)

Dùng làm thuốc trừ sâu
Tạo với muối sunfat
Chất kết tủa trá̛ng phau.
44. Muối gì không thiếu váng

Trong thành phần thủy tinh
Sóda cùng cát trấng
Dun lên muối tạo thành.
45. Muối gi cùng axit

Tạo bọt khi phun ra
Tư binh phòng cưu hỏa
Dập lưa chũa cháy nhà.
46. Muối gì mà dung dịch

Có màu xanh lá cáy
Diẹn phân, mạ kim loại
Chống sụ gi phá hoại.
47. Muối gì loại hơp chất

Bac vái halogen
Có dộ tan lớn nhất
Phân tư lại dàn em.
48. Muối gì màu luc nhạt

Dể lâu ngả màu vàng
Khüu duọc bạc nitrat
Giải phóng bạc rō ràng.
49. Muối gì làm xúc tác

Chế axit hūu co
Tù một andehit
Va chất khi oxi.
50. Muối gì chá̀t tả̉y rửa

Có nguồn gốc sâu xa
Axit tùt dầu mó
Cùng muối nũa tạo ra.
51. Muôi gì gốc axit

Dể nhận biết sá́t ba (III)
Nếu nhó vào dung dịch
Màu dó máu hiện ra.
52. Muối gì có tính chất

Gây dộc hại cho nguài
Với kiềm tạo oxit
Màu vàng ngả dỏ tưoi.
53. Muói gì vị dắng chát

Trong nuớc rất dể tan
Dùng trong ngành y té
Làm thuốc xố, nhuận tràng?
54. Muối gì hê gặp nuớc

Liền bị phân hủy ngay?
Phi kim cùng kim loại
Nung lên tạo muối này.
55. Muối gì có tinh chất

Tia phóng xa chiếu vào
Sáng lóe lên rồi tát
Đốm sáng tưa ánh sao?
56. Muối gì có chứa nhôm

Diều chế tư dất sèt
Là muói sunfat kép
Ngậm nuớc khi kế tinh.
57. Muối gì làm thuốc súng

Gọi là thuốc nổ den
Dưng vào việc săn thú
Ò miền núi, khá quen.
58. Muối gì sẽ thăng hoa

Su thăng hoa hóa học
Tạo ra hai khi dộc
Dể kết hợp với nhau.
59. Muói gì trộn nuớc dá

Nhiệt dộ hạ thá́p hon
Là hơn hơp sinh hàn
Duọ̣c dùng để làm lạnh.
60. Muối gì bôi lên nhôn

Sinh ra một hổn hống
Ngăn tạo màng oxit
Làm nhôm mọc "lông to".
61. Muối gì dung dịch hồng

Làm mưc viết lên giấy
Khi dọc ho lên lưa
Nét chũ hiên màu xanh.
62. Muối gì màu thay dối

Hồng, do tim rồi xanh
Tùy số phân tử nước
Trong phân từ muối này.
63. Muói gì cùng axit

Tạo hổn họp tụ cháy
Khi bôi lên bấc dèn
Châm lưa không cần diêm.
64. Muối gì khi nhiệt phân

Sinh khí nâu dộc hại
Có hình nhu duôi cáo
Mùi há́c bay xa, gàn
65. Muối gì là thuốc thíu

Có tên gọi Nessler
Vói anzoni rât nhạy
Chác ban dã tùng nghe.
66. Muối gì thầt ki la

Nóng lạnh cüng dổi màu
Lúc dó nhạt, dỏ tuooi
Khi vàng chanh, nâu thẩm.
67. Muối gì khi hòa tan

Nó thu nhiệt rất nhanh
Làm cốc dựng dung dịch
Nuớc dóng băng ngoài thành.
68. Muối gì là muối kép

Có tên gọi muó́i Mohr
Vê thành phần của muối
Nhờ bạn chỉ giùm cho.
69. Muối gì khi dốt nóng

Sẽ biến thành "con rán"
Mình vàng, lốm đốm xanh
Vuơn dài nhanh, cuộn lại.
70. Muối gì khi kết tinh

Có hiện tuợng lóe sáng
Cùng âm thanh nhè nhe
Lí thúu và lạ kì.
71. Muối gì vị rất mặn

Mặn hon cả muối ăn
Kim loại thuộc họ kiêm
Khối lượng riêng nhỏ nhất.
72. Muối gì tên thưong mại

Goi dịch tảy Javel
Dùng trong ngành sợ, dệt
Chắc nhiều bạn dà quen.
73. Muối gì làm xúc tác

Cho ankin họp nuớc
Andehit thu duọc
Dûng cho việc tráng guong.
74. Muối gì làm xúc tác

Cho phản úng crackinh
Mach cacbon bé gãy
Dầu mỏ dầy etxāng.
75. Muối gì dùng chống ảm

Cho muối ăn hàng ngày
Ngăn không cho chảy rũa
Bảo quản lâu hon nũa.
76. Muối gì dộ kiềm yếu

Dùng giặt hàng len, to
Tên thuơng mại của mó
Xin bạn chí giùm cho.
77. Muối gì trộn với rự̛̣u

Là ruọ̣u ba lần ruợu
Hổn hợp bùng cháy ngay
Láy lửa lúc tối ngày.
78. Muối gi rất ngọt, dộc

Kim loại: beri, chi
Bi mật gốc axit
Xin các bạn cho biết.
79. Muối gì khi hòa tan

Sẽ thủy phân mănh liệt
Khói tráng bay mùu mịt
Phải thận trọng khi dùng.
80. Muối gì làm khô nhanh

Do có tính hưt âm
Tinh thể có nuớc ngậm
Màu trấng hóa thành xanh

Tính chất muối rât hay
Ûng dụng muối rất rộng
Mồ các chị, các anh
Chüng ta cùng giải dáp.

- Giai dáp

1. Khối Mohr; muối Glauber; muối Zeise; muối Berthollet.
2. Muối natri nitrit NaNO_{2}.
3. Muới $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$. Lúc nướng bánh nó phân hủy theo phản ưng sau:

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \stackrel{+0}{=} 2 \mathrm{NH}_{3} \uparrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

Các khí giải phóng ra làm cho bánh nở, xốp.
4. Muối natri borac $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ còn gọi là hàn the.

Hàn the còn được dùng làm thuốc:
"Hàn the ngọt, mặn mát thay
Tiêu viêm, hạ sót giảm ngay dau dầu".
5. Muới mono natri glutamat (muối của axit amin).
6. Muói KNO_{3} còn gọi là diêm tiêu.
7. Muối kali pemanganat KMnO_{4} hay còn gọi là thuốc tím.
8. Muối natri hipoclorit NaClO ở nhiệt độ thường đã có thể phân hủy thành $\mathrm{NaCl}, \mathrm{NaClO}_{3}$ và Cl_{2} là chất oxi hóa mạnh. Tác dụng tẩy trấng và làm sạch chinh là dựa trên phán ưng này. Tên gọi trên thị trường là nước Javel. Để lâu nước Javel giảm dần tác dụng.
9. Muối natri stearat $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}$ và natri panmitat $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COONa}$.

Khi giặt bà̀ng nước cứng nó kết hợp với các ion Ca^{2+} và Mg^{2+} tạo ra kết tủa $\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}\right)_{2} \mathrm{Ca}$ và $\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}\right)_{2} \mathrm{Mg}$ bết vào mặt vải làm vải chóng mục.
10. Muôi CaOCl_{2} còn gọi là clorua vôi.
11. Muó́i $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ còn gọi là phèn chua.
"Anh dừng bác bạc làm cao
Phèn chua em dánh nước nào cũng trong".

Phèn chua còn dùng trong công nghiệp dệt và giáy.
12. Muối kali clorat KClO_{3}.

$$
2 \mathrm{KClO}_{3}+2 \mathrm{~S}+\mathrm{C}=2 \mathrm{KCl}+2 \mathrm{SO}_{2} \uparrow+2 \mathrm{CO}+Q
$$

- Lửa đỏ thêm muối: $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
- Lửa xanh lá cây thêm muối: $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
- Lửa vàng thêm muối: NaNO_{3}
- Lửa tím thêm muối: KNO_{3}.

13. Muối NaHCO_{3} còn gọi là thuốc muối.
14. Muối iot.
15. Muối CuSO_{4} và ZnSO_{4}.
16. Muối $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ và $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$.
17. Muối $\mathrm{CaCl}_{2}, \mathrm{MgCl}_{2}, \mathrm{CaSO}_{4}, \mathrm{MgSO}_{4}$. Khử nó phải dùng phương pháp vôi-sôđa. Nước cứng không thể dùng đé̉ chạy đầu máy hơi nước; pha trà kénı ngon; giạt quần áo bằng xà phòng mau hỏng.
18. Muối CaCO_{3} là thành phần chính của đá vôi.
19. Muối NaCl . Nãm 1775 ông LeBlanc được giải thưởng của Viện Hàn làm Khoa học Pháp nhờ việc thực hiện ba phản úng biên từ muối ăn ra sôđa để ché tạo thủy tinh:

$$
\begin{aligned}
& 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl} \\
& \mathrm{Na}_{2} \mathrm{SO}_{4}+3 \mathrm{C}=\mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{CO}+\mathrm{CO}_{2} \\
& \mathrm{Na}_{2} \mathrm{~S}+\mathrm{CaCO}_{3}=\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaS}
\end{aligned}
$$

20. Muối $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ còn gọi là thạch cao.
21. Muối AgNO_{3}.

$$
\begin{aligned}
\mathrm{R}-\mathrm{CHO}+2 \mathrm{AgNO}_{3}+3 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}-\mathrm{COONH}_{4} & +2 \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& +2 \mathrm{Ag} \downarrow
\end{aligned}
$$

Ag tạo ra trong phản ứng trên phủ một lớp mỏng trển mặt
kinh có tác dụng phản xạ ánh sáng.
22. Muối AgBr.

$$
2 \mathrm{AgBr}=2 \mathrm{Ag}+\mathrm{Br}_{2}
$$

23. Muối $\mathrm{NH}_{+} \mathrm{Cl}$.

$$
\mathrm{NH}_{4} \mathrm{Cl}=\mathrm{NH}_{3} \uparrow+\mathrm{HCl} \uparrow
$$

24. Muói $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Cu}$.
25. Muối kēm photphua $\mathrm{Zn}_{3} \mathrm{P}_{2}$.

$$
\mathrm{Zn}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{PH}_{3} \uparrow
$$

26. Muối KMnO_{4} và KClO_{3}.
27. Muói xianua, muối thủy ngân.
28. Muối KI.

$$
2 \mathrm{KI}+\mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{KOH}+\mathrm{O}_{2}+\mathrm{I}_{2}
$$

I_{2} đự̛̣ giải phóng làm cho tinh bột biến thành màu xanh.
29. Muối $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Trong thành phần của cốm bổ canxi có: tricanxi photphat, canxi gluconat, canxi cacbonat.
30. Muối CaCO_{3}. Bột nhẹ cũng là muôi CaCO_{3} nhưng nhẹ hơn 6 lần so với quặng CaCO_{3}.
31. Muó́i $\mathrm{Ag}_{2} \mathrm{~S}$ do trong không khí có một lượng nhỏ $\mathrm{H}_{2} \mathrm{~S}$ tác dụng với bạc tạo ra.
32. Muối CaCO_{3}. Muối này được tạo ra do khí CO_{2} có trong không khí tác dụng với $\mathrm{Ca}(\mathrm{OH})_{2}$:

$$
\mathrm{CO}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{CaCO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}
$$

33. Muối $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ và $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$.

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=\mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=\mathrm{MgCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

34. Muối CuSO_{4}. Pha dung dịch CuSO_{4} với vôi dược dung dịch
boocđô dùng chống bệnh nấm mốc cho cây.
35. Muối $\mathrm{NH}_{4} \mathrm{NO}_{3}$ còn gọi là đạm 2 lá. Để gần bếp lửa có thể bị phân hủy: to

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3}=2 \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

36. $\mathrm{Muối} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ có lẫn CaSO_{4} gọi là supephotphat đơn. Muối $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ gọi là supephotphat kép.
37. Muối $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ và $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$. Hỗn hợp các muối này có tên là amophot.
38. Muối KCl là loại phân kali được dùng nhiều nhất. Ngoài ra còn có thể dùng $\mathrm{K}_{2} \mathrm{SO}_{4}$ và $\mathrm{K}_{2} \mathrm{CO}_{3}$ làm phân kali.
39. Muối nitrat.

Khi có tia lửa điện (chớp) N_{2} và O_{2} trong khơng khí tác dụng với nhau:

$$
\begin{aligned}
& \mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO} \\
& 2 \mathrm{NO}+\mathrm{O}_{2}=2 \mathrm{NO}_{2}
\end{aligned}
$$

Khi NO_{2} tác dụng với nước mưa tạo ra HNO_{3} rơi xuống đất tác dụng với các chất kiềm có trong đất tạo ra muối nitrat.

$$
\begin{aligned}
& 4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{HNO}_{3} \\
& 2 \mathrm{HNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Muối nitrat là phân đạn làm cho lúa tốt nhanh vì thế có cáu ca dao:
"Lúa chiêm láp ló dằu bò
Nghe tiểng sấn đợng phất cờ mà lên".
40. Các muối axit của các axit yếu. Thí dụ NaHCO_{3} :

$$
\mathrm{HCO}_{3}^{-}=\mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}
$$

axit

$$
\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+}=\mathrm{H}_{2} \mathrm{CO}_{3}
$$

bazo.

41. NaCl trộn thêm $\mathrm{KI}, \mathrm{KIO}_{3}$ gọi là muối iot.
42. $\mathrm{CH}_{3} \mathrm{COONa}$ dùng để điều chê CH_{4} trong phòng thí nghiệm CaO

$$
\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{NaOH} \underset{\mathrm{t}^{\mathrm{o}}}{\longrightarrow} \mathrm{CH}_{+} \uparrow+\mathrm{Na}_{2} \mathrm{CO}_{3}
$$

43. $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{BaSO}_{4} \downarrow+2 \mathrm{NaCl}$
44. $\mathrm{Na}_{2} \mathrm{SiO}_{3} ; \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{SiO}_{2}=\mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{CO}_{2} \uparrow$
45. $\mathrm{NaHCO}_{3} ; 2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}$ d.p.d.d
46. $\mathrm{NiSO}_{4} ; 2 \mathrm{NiSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{Ni} \downarrow+\mathrm{O}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{SO}_{4}$ 47. AgF

$$
+2
$$

48. $\mathrm{FeSO}_{4}, \mathrm{FeCl}_{2} ; 4 \mathrm{FeSO}_{4}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{gathered}
=2 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O} \\
3 \mathrm{FeSO}_{4}+3 \mathrm{AgNO}_{3}=\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{Ag}_{\downarrow} \\
\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mn}
\end{gathered}
$$

49. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mn} ; 2 \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}$ 50. $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{Na}$.
50. $\mathrm{KSCN}, \mathrm{NH}_{4} \mathrm{SCN} ; \mathrm{Fe}^{3+}+3 \mathrm{SCN}^{-}=\mathrm{Fe}(\mathrm{SCN})_{3}$ (đd máu)
51. $\mathrm{HgSO}_{4}, \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$
52. $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
53. $\mathrm{Al}_{2} \mathrm{~S}_{3}$
54. ZnS
55. Phèn nhôm $\mathrm{M}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{M}^{+} \text {là } \mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}
$$

57. KNO_{3}
58. $\mathrm{NH}_{4} \mathrm{Cl} ; \mathrm{NH}_{4} \mathrm{Cl}=\mathrm{NH}_{3} \uparrow+\mathrm{HCl} \uparrow$
59. NaCl
60. $\mathrm{HgCl}_{2}, \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$. Dánh sạch miếng nhôm rồi bôi lên một dung dịch muối thủy ngân thì Al sẽ đẩy Hg ra khỏi muối:

$$
2 \mathrm{Al}+3 \mathrm{Hg}^{2} \mathrm{NO}_{3}^{\prime}{ }_{2}=2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{Hg}
$$

Hg tạo với Al một hỗn hống ngãn không cho tạo ra màng oxit nhôm liên tục. Ờ từng điểm nhôm bị oxi hớa bởi oxi của không khí tạo ra $\mathrm{Al}_{2} \mathrm{O}_{3}$ trông giống như nhôm mọc "lông ta̛".
61. Muối coban. Khi hiđrat hóa nó có màu hờng, lúc khan nó có màu xanh.
62. Muối coban. Màu của các muối Co (II) thay dổi tùy theo mức độ hiđrat hóa của ion Co^{2+}. Sự biến đổi này xảy ra rõ rệt hơn cá là $\mathrm{CoCl}_{2}, x \mathrm{H}_{2} \mathrm{O}$

x	6	4	2	1,5	1	0
màu	hồng	đỏ	tím hồng	tím xanh thẫm	tím xanh	xanh nhạt

63. KMnO_{4}. Trộn KMnO_{+}với $\mathrm{H}_{2} \mathrm{SO}_{4}$ đặc sẽ \sinh ra axit pemanganic :

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4}=\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{HMnO}_{4}
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}$ đặc dư lấy nước của HMnO_{4} tạo ra anhiđrit manganic $\mathrm{Mn}_{2} \mathrm{O}_{7}$. Chất này là một chất lỏng màu nâu, sánh như dầu, dễ bị phân hủy ở nhiệt độ thường tạo thành MnO_{2} và O_{2} (chứa tỉ lệ O_{3} đáng kể). Vì vậy $\mathrm{Mn}_{2} \mathrm{O}_{7}$ là một chất oxi hóa cực kì mạnh. Rượu ete và nhiều chất hữu cơ khác bốc cháy khi tiếp xúc với $\mathrm{Mn}_{2} \mathrm{O}_{7}$.
64. Muối nitrat của các kim loại nặng.

$$
2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}=2 \mathrm{PbO}+4 \mathrm{NO}_{2} \uparrow+\mathrm{O}_{2}
$$

Khí màu nâu có hình đuôi cáo là khí NO_{2}.
65. Dung dịch $\mathrm{K}_{2} \mathrm{HgI}_{4}$ không màu gọi là thuốc thử Nessler rất nhạy với ion amoni trong môi trường kiềm :

$$
\mathrm{NH}_{4}^{+}+2\left(\mathrm{HgI}_{4}\right)^{2-}+4 \mathrm{OH}^{-}=7 \mathrm{I}^{-}+3 \mathrm{H}_{2} \mathrm{O}+\left[{\underset{\sim}{\mathrm{Hg}}}_{\substack{\mathrm{O}} \underset{\text { dó nâu }}{\mathrm{Ng}} \mathrm{NH}_{2} \mathrm{I} \downarrow}\right.
$$

66. Các muói $\mathrm{Ag}_{2} \mathrm{HgI}_{4}$ và $\mathrm{Cu}_{2} \mathrm{HgI}_{4}$

- Bột $\mathrm{Cu}_{2} \mathrm{HgI}_{4}$ có màu đỏ nhạt ở $55^{\circ} \mathrm{C}$; dỏ máu ở $57^{\circ} \mathrm{C}$; đỏ gạch ở $63^{\circ} \mathrm{C}$, nâu nhạt ở $68^{\circ} \mathrm{C}$, màu sôcôla ở $71^{\circ} \mathrm{C}$; nâu den ơ $88^{\circ} \mathrm{C}$ và đen ở $100^{\circ} \mathrm{C}$. Trên $300^{\circ} \mathrm{C}$ màu của muối sẽ den mải và không thay đời khi hạ nhiệt độ.
- Bột $\mathrm{Ag}_{2} \mathrm{HgI}_{4}$ có màu vàng chanh ở $38^{\circ} \mathrm{C}$; dỏ nhạt ó $52^{\circ} \mathrm{C}$; đỏ tươi ở $60^{\circ} \mathrm{C}$ và nâu ở $70^{\circ} \mathrm{C}$.

67. $\mathrm{NH}_{4} \mathrm{NO}_{3}$. Khi nhiệt độ không khí rất thấp (trời rét đậm) nhưng ướt đáy cốc rời hòa tan một lượng lớn $\mathrm{NH}_{4} \mathrm{NO}_{3}$, nước ngoài đáy cớc có thể đóng băng làm cho cớc dính chặt xuống mặt bàn đá.
68. Muối Mohr có thành phần: $\left(\mathrm{NH}_{4}\right)_{2} \cdot \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
69. Muối thủy ngân sunfoxianua $\mathrm{Hg}(\mathrm{SCN})_{2}$

Khi nung nóng muối bị phân hủy :

$$
2 \mathrm{Hg}(\mathrm{SCN})_{2}=2 \mathrm{HgS}+\mathrm{CS}_{2}+\mathrm{C}_{3} \mathrm{~N}_{4}
$$

"Con rấn" bò ra chính là hỗn hợp HgS và CS_{2}.
CS_{2} bốc cháy trong không khí với ngọn lửa màu xanh:

$$
\mathrm{CS}_{2}+3 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{SO}_{2}
$$

Vi thé có những ngọn lửa nhỏ màu xanh phụt ra trên minh "con rán".
70. Muối bari bromat $\mathrm{Ba}\left(\mathrm{BrO}_{3}\right)_{2}$ màu trấng, tinh thể cơ hình kim; khi kết tinh sẽ phát ra tia sáng màu xanh cùng với nhừng âm thanh nhè nhẹ.
71. LiCl ; Li là kim loại rất hiếm.
72. NaClO .
73. HgSO_{4} hoạac HgCl_{2}

$$
\mathrm{HgSO}_{4}
$$

$$
\mathrm{CH} \equiv \mathrm{CH}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{t}^{\circ}=80^{\circ} \mathrm{C}]{\longrightarrow} \mathrm{CH}_{3} \mathrm{CHO}
$$

74. Alumino silicat $\mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{3}$
75. $\mathrm{Na}_{3} \mathrm{PO}_{4}$. Pha $70 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}$ vào $1 l$ nước, phun đều lên muối ăn, trộn thật ki và phoi khô.

Lớp $\mathrm{Na}_{3} \mathrm{PO}_{4}$ không độc sẽ chớng ẩm rất tốt.
$1 l$ dung dịch có thể dùng cho 10 kg muối.
76. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ tên thương mại là sôđa.
77. KMnO_{4}. Trộn KMnO_{4} với glixerin, hỗn họ̣p sẽ bùng cháy.
78. $\mathrm{Be}\left(\mathrm{CH}_{3} \mathrm{COO}_{2}\right.$ và $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
79. $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
80. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

19- Những câu dó vè NaCl

1. Thành phà̛n chính muới ăn

Natri clorua vị mạ̣n
Là hơp chát ion
Có don phôn tư khóng?
2. Muối ăn rất cần thiết

Vói co thể chúng ta
Mối ngày cần bao nhiêu
Liệu các bạn có biết?
3. Trong con nguòi chúng ta

Nuóc chiếm hai phần ba
Tỉ lệ muối bao nhiêu
So vói nuóc co thê?
4. Muói: vai trò chính yếu

Làm co thể thăng bàng
Các dịch thê trong nguời
\dot{O} đâu có chứa muối?
5. Muối ăn tuy cần thiét

Nhưng không dược quá thừa
Có bệnh muối không ua
Bệnh gì bạn có biét?
6. Ãn muạn quá có hại
$A i$ có thói quen này
Nên dùng muối ăn mặn
Những muuối gì trộn lẩn?
7. Vải màu giặt hay phai

Ngâm muối truóc khi giặt
Thuốc nhuộm khó bị trôi
Hãy giải thich tại sao?
8. Dung dịch muối dảng truang

Phòng viêm họng, sâu rāng
Rưa vết thtuong mau khöi
Cách pha nước muối ấy?
9. Hạt muối mang vị mạăn

Nhác nhỏ nghia thủy chung
Ai oi chua ngot dã tilung
Gìng cay muói mạ̣n xin đ̛̛̀ng quên nhau.

- Giải dáp

1. Không. Tuy nhiên người ta thường sử dụng công thức NaCl

Vì tinh ehất không bão hòa của liên kết ion nên công thức phân tử của cácc hợp chất ion phải viết dưới dạng đa phân tử ($\mathrm{NaCl}_{\mathrm{n}}$ ở thể lỏng và rán. Dơn phân tử hợp chất ion chỉ tồn tại ơ thê hỡ, ở nhiệt độ cao.
2. $10-15 g$
3. $0,9 \%$. Hồng cầu chỉ tồn tại ở nờng độ muối này. Thấp hơn thì hồng cầu bị vỡ, cao hơn thì nó bị teo.
4. Nước mắt, mảu, nước tiểu... đều có muối NaCl giống như nước biển.
5. Người có bệnh cao huyết áp cần ăn nhạt muối.

Người mấc bệnh thận ān muối sê bị phù.
6. Muối cho những người ăn mặn là hỗn hợp gồm muối ãn, muới kali và magie. Các nguyên tố sau này cần cho hệ tim mạch. Hỗn hợp muối này có lượng muối ăn ít hơn khoảng 30% nhưng lại có cảm giác mặn hon. Loại muối này được sử dụng trong công nghiệp thực phẩm ờ Liên Xô trước đây.
7. Muối làm giảm bớt độ hòa tan của thuốc nhuộm trong nước.

Ngoài ra muối phân li ra ion dương và ion âm có thể làm tãng sự kết hợp của thuốc nhuộm với sợi vải do đó làm cho thuốc nhuộm vài khó bị trôi và vải it phai khi giặt.
8. Pha $9 g$ muối vào $1 l$ nước đun sôi, y học gọi là dung dịch muối đẳng trương. Pha đặc hơn gọi là dung dịch muối ưu trương, pha loãng hơn gọi là dung dịch muối nhược trương.
9. Ỏ các nước thuộc Liên Xô cū người ta đón khách quý bà̀ng bánh mì và muới. Ca dao Việt Nam có câu:
"Ai ai chua ngot dā tùng
Gừng cay muối mặn, xin dừng quên nhau"

20. Nguyên tô nào nhất?

1. Nguyên tố nào ở trạng thái rấn được biết sớm nhất.
2. Nguyên tớ nào ở trạng thái khí tìm được trước nhất.
3. Nguyên tố nhân đạo nào tổng hợp được sớm nhất.
4. Nguyên tố nhân tạo nào có sớ hiệu nguyên tử lớn nhất và bà̀ng bao nhiêu? (đến hết nām 1995).
5. Nguyên tố nào tìm thấy ở trạng thái tự do với khới lượng lớn nhất? (Kim loại)
6. Nguyên tố nhân tạo nào có tuổi thọ ngán nhất.
7. Trong vỏ Trái Đát:
a) nguyên tớ nào có nhiều nhất;
b) nguyên tố nào có ít nhất.
8. Nguyên tố nào có nhiều nhất trong vũ trụ.
9. Nguyên tố nào:
a) có đồng vị bền nhất;
b) có đồng vị kém bền nhất;
c) Có nhiều đồng vị nhất?
10. Nguyên tố nào cơ khả năng tạo ra nhiều hợp chất nhất.
11. Nguyên tố nào có tính oxi hơa mạnh nhất.
12. Nguyên tố nào dễ mất electron nhất, mẫn cảm nhất với ánh sáng.
13. Nguyên tố nào mà dạng thù hình có độ cứng lớn nhắt.
14. Nguyên tố nào đắt nhất.
15. Ó trạng thái khí, nguyên tó phi kim nào:
a) nhẹ nhất;
e) cứng nhất;
b) nạ̣ng nhất;
g) dễ dát mòng và kéo dài nhất;
c) $t_{n c}^{o}$ cao nhất;
h) dẫn diện, dẫn nhiệt tốt nhất.
d) t_{nc}° thấp nhất;

- Giài dáp

1. Vàng được biết sớm nhất, khuôn mặt người bầng vàng tinh khiết tìm được trong làng tả̉m Ai Cập có từ thế ḳ̣ XIV (trước công nguyên).
2. Hidro, được tìm ra năm 1766. Nhà hớa học kiêm vật lí và toán học người Anh H. Cavendish (1731-1810) được công nhận là người tìm ra nguyên tố hiđro.
3. Tecnexi, được tởng hợp nām 1936 bởi nhà vật lí tré tuối người Italy E. Segrè bàng cách dùng chùm hạt nhân đơteri bắn phá hạt nhân molipđen.

$$
\underset{1}{2} \mathrm{H}+\underset{42}{\mathrm{Mo}} \rightarrow \underset{0}{98} \underset{43}{\mathrm{~T}^{1}} \underset{+\mathrm{Tc}}{99}
$$

4. Nguyên tó 111, được tồng hợp vào tháng 12-1994 tại Phòng thí nghiệm nghiên cứu hạt nhân nặng GSI ở Cộng hòa liên bang

Đức do nhà khoa học P.Amsbruster đứng đầu.
5. Dã tìm thấy cục đồng nặng $420 t a ̂ ́ n ~(o ̛ ̉ ~ M i ̉), ~ đ o ́ ~ l a ̀ ~ k h o ̂ ́ i ~ l u ̛ o ̛ ̣ n g ~$ lớn nhất của một nguyên tố kịm loại tồn tại ở trạng thái tự do (còn nới là đồng tự sinh).
6. Nguyên tố 110 , chỉ tồn tại vài phần mười của một phần nghìn giây, tự phấn rã do phóng ra những hạt anpha $\alpha\left(\mathrm{He}^{2+}\right)$.
7. Trong vỏ Trái Đất: a) Nguyên tố oxi có nhiều nhất, chiếm khoảng 49% về khối lượng; b) Nguyên tố atatin có it nhất, chi vén vẹn có $0,16 \mathrm{~g}$.
8. Trong vũ trụ, hiđro là nguyên tố phổ biến nhất nơ đứng đầu một qúa trỉnh tổng hợp các nguyên tố khác trong các ngôi sao (hiđ̛o chiếm gần một nửa khới lượng của Mặt Trời. Mối giây đồng hờ, Mạ̣t Trời tiêu thụ hàng triệu tấn nguyên liệu hiđ̛o dể sản sinh nāng lượng khổng lồ, ngươn gớc cơ bản của sự sớng trên Trái Đất. Đơ là năng lượng được giải phóng ra trong phản ứng nhiệt hạch, từ 4 hạt nhân hiđro tạo nên một hạt nhân heli và hai pozitron: 4$\}_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{1} \mathrm{He}+2 e^{+}$, pozitron có cùng khối lượng như electron và mang một điện tích sơ đảng dương).
9. a) và b) Trong ba dãy các nguyên tố phơng xạ tự nhiên thì thori là nguyên tó có đồng vị hền nhất, chu kì bán rã của ${ }_{90}^{23}{ }^{2}$ Th là $1,4.10^{10}$ năm, còn poloni có đồng vị kém bền nhất. Chu kì bán rã của ${ }_{814}^{212} \mathrm{Po}$ là 2.10^{7} giáy. c). Thiếc là nguyên tố có nhiều đồng vị tự nhiên nhất ($\mathrm{mười}$ đồng vị:).

Chú thích: Ngoài gần 300 đồng vị tự nhiên, con người còn tổng hợp được khoảng 1600 đồng vị nhân tạo. Nếu kể cả các đồng vị nhân tạo thì thiếc không phải là nguyên tố có nhiều đồng vị nhất.
10. Cacbon là nguyên tố có khả năng tạo ra nhiều hợp chất nhất, khoảng trên 5 triệu hợp chất trong đó chủ yếu là hợp chất hữu co.
11. Flo là nguyên tố có tính oxi hóa mạnh nhất. Flo có thể chiếm electron của oxi, đẩy oxi ra khỏi nước:

$$
2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{H}^{+}+4 \mathrm{~F}^{-}+\mathrm{O}_{2}
$$

12. Xesi là nguyên tố dễ mất electron nhất (nãng lượng ion hóa của nguyên tử Cs là nhỏ nhất, $I_{1}=3,89 \mathrm{eV}$), có thể mất electron ngay dưới tác dụng của ánh sáng, nên nơi là mẫn cảm với ánh sáng (do dạc tính này xesi là kim loại không thể thay thế trong việc sản xuất tế bào quang điện, đèn vô tuyến v.v...).

Chú thích: Thực ra dễ mất electron nhất là franxi $I_{1}=3,83$ $e V$. Nhưng franxi là một nguyên tố phóng xạ, đời sống rất ngắn, là một trong những nguyên tố hiếm nhất. Vì vậy trên thực tế không nói tới. 'Nếu bạn nào trả lời là nguyên tố Fr vẫn được coi là dúng).
13. Kim cương, một dạng thù hình của nguyên tố cacbon, có độ cứng lớn nhất so với tất cả các chất (trong một thang độ cứng, độ cứng của kim cương bằng 10 , các chất khác đều có độ cứng nhỏ hờn 10).
14. Califoni là nguyên tớ đát nhất, \lg califoni giá 10 triệu đô la Mí (califoni có thể liên tục trong một số nãm phát ra một lượng lớn notron làm chết tẹ̛ bào ác tính ở người).
15. Phi kim ở trạng thái khí: a) Hiđro nhẹ nhất, $1 l$ khí hiđro chỉ nạang có $0,089 \mathrm{~g}$ (so với không khí là $1,293 g$); b) Rađon nặng nhất, $1 l$ khí này nặng $9,91 \mathrm{~g}$.

Chú thich: Theo tính chắt các nguyên tớ trong hệ thống tuần hoàn được chia thành hai loại là kim loại và không phải kim loại tức là phi kim. Theo cấu tạo thì phân chia thành các nguyên tớ s, nguỳên tố p, nguyên tố $d \ldots$ (những nguyên tố có nguyên tử đang làm đầy các phân lớp s, phân lớp p, phân lớp $d . .$.).
16. Kim loại ở trạng thái rán: a) Liti nhẹ nhất, $D=0,534$ $\mathrm{g} / \mathrm{cm}^{3}$, nhẹ hơn nước; b) Osimi nặng nhất; $D=22,48 \mathrm{~g} / \mathrm{cm}^{3}$, nặng
hơn nước trên 22 lần; c) Vonfram khó nóng chảy nhất, $t^{\prime \prime}{ }_{n c}=3420^{\circ} \mathrm{C}$; d) Xesi dễ nóng chảy nhất $t^{\circ}{ }_{n c}=28,5^{\circ} C$; e) Crom cửng nhất, độ cứng bằng 9 (trong thang độ cứng mà kim cương lấy bằng 10 ; ; g). Vàng dễ dát móng và kéo dài nhất, vàng có thể dát thành lá mỏng tù cỡ $0,12 \mathrm{~mm}$; khoảng 600 lá vàng mới dầy bằng tờ giấy viết); h) Bạc dẫn diện, dẫn nhiệt tốt nhất inếu quy cho dộ dẫn diện và dẫn nhiệt của Ag dều bằng 1 thì của Cu là 0,95 và 0,92 , của Al là 0,61 và 0,50 .

21. Bạn thừ giải đáp:

1. Lấy cùng một khới lượng m (g) mỗi kim loại $\mathrm{Mg}, \mathrm{Al}, \mathrm{Zn}$ lằn lượt bỏ vào ba bình đêu chứa 150 ml dung dịch $\mathrm{H}_{2} \mathrm{SO}_{4} 0,2 \mathrm{M}$,

Giải thich và cho biết trường họp nào lự̛̣ng H_{2} thu đự̛̣ nhiều nhất.
2. Hãy chỉ ra hai chất hữu cơ A và B thuộc hai loại chất khác nhau, cá hai lại đêu có thế tham gia phản ứng clo hóa và phản ứng cộng brom, hai sản phẩm của phàn ưng này lại là những dồng phân thuộc cùng loại chắt. Giải thich và viết các phương trình phản ưng.

- ©iải oláp

1. Các phương trình phản ứng

$$
\begin{gathered}
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{+}=\mathrm{MgSO}_{4}+\mathrm{H}_{2} \uparrow \\
m / 24 \mathrm{~mol} \\
2 \mathrm{ml} / 24 \mathrm{~mol} \\
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{O}_{4}=\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \uparrow \\
\mathrm{~m} / 27 \mathrm{~mol} \quad 3 \mathrm{~m} / 2.27=\mathrm{m} / 18 \mathrm{~mol} \\
\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{ZnSO}_{4}+\mathrm{H}_{2} \uparrow \\
\mathrm{~m} / 65 \mathrm{~mol} \\
\mathrm{~m} / 65 \mathrm{~mol}
\end{gathered}
$$

Với $m>0$ ta luôn có: $m / 18>m / 24>m / 65$, nhưng lượng hiđro tối đa thu được bằng: $\mathbf{n}_{\mathrm{H}_{2}}=0,15 \cdot 0,2=0,03 \mathrm{~mol}$ nên có bốn khả năng tùy theo m.

1. Khi $m \geq 1,95 g$ tức là: $m / 65 \geq 0,03$ mol, lượng hiđ̛o thu được là như nhau trong cả ba trường hợp, đều bằng $0,03 \mathrm{~mol}$.
2. Khi $0,72 \mathrm{~g} \leq 1.95 \mathrm{~g}$ tức là $m^{\prime} / 24 \geq 0,03 \mathrm{~mol}>m / 65$, lượng hiđ̛o thu được nhiều nhất trong hai trường hợp là Mg và Al , đều bà̀ng 0,03 nıol.
3. Khì $0,54 \mathrm{~g} \leq m_{2}<0,72 \mathrm{~g}$ tức là: $m / 18 \geq 0,03 \mathrm{~mol}>m / 24$, lượng hiđro thu được nhiều nhất trong trường hợp Al và bằng $0,03 \mathrm{~mol}$,
4. Khi $0<m<0,54 g$ tức là: $0,03 \mathrm{~mol}>\mathrm{m} / 18>m / 24>m / 65$, lượng hiđ̛o thu được nhiều nhất trong trường hợp Al và bằng $m / 18$ mol $<0,03 \mathrm{~mol}$.

Chú thich: Câu đố này cho ta thấy cần phân biệt hai đại lượng thường dùng trong hóa học là khối lự̛̣ng (số gam) và lượng chất (số mol).

Cùng nội dung như thé, nhưng nếu cho: "lấy cùng một lượng chất mỗi kim loại..." việc giải sẽ đơn giản hơn. Chi khi $n_{k l} \geq 0,03 m o l$ thì lượng H_{2} thu dược là như nhau trong cả ba trường hợp. Khi $n_{k l}<0,03 \mathrm{~mol}$ thì lượng H_{2} thu được trong trường hợp Al là nhiều nhất và bà̀ng $0,03 \mathrm{~mol}$ nếu: $0,02 \mathrm{~mol} \leq n_{\mathrm{kl}}<0,03 \mathrm{~mol}$, bà̀ng $1,5 n_{\mathrm{kl}}$ khi $n_{\mathrm{kl}}<0,02 \mathrm{~mol}$.
2. Vì sản phẩm cộng brom của A và B là hai đồng phân cùng loại chất nên A. và B phải có cùng công thức phân tử. A và B lại đều cớ khả nāng tham gia phản ứng clo hơa và phản ứng cộng brom, nên một chất là đồng đảng của etilen và một chất là xicloankan có vòng 3 hoặc 4 C . Vậy A và B là những cặp chất sau:
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}$
Butilen-1. Butilen-2 hoạc iso-butilen

Thí dụ các phương trình phản ứng của cạ̣p 1 :

$$
\begin{aligned}
& t^{\circ} \text {. xúc tác } \\
& \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl} \\
& \underset{\mathrm{CH}_{2}-\mathrm{CH}_{2}+\mathrm{Cl}_{2} \longrightarrow}{\substack{\mathrm{CH}_{2}}} \stackrel{\mathrm{CH}_{2}-\mathrm{CHCl}}{\mathrm{CH}_{2}}+\mathrm{HCl} \\
& \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{Br}-\mathrm{CHBr}-\mathrm{CH}_{3} \\
& \text { 1,2- đibrompropan } \\
& \stackrel{\overparen{C H}}{\mathrm{CH}_{2}-\mathrm{CH}_{2}}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br} \\
& \text { 1,3- dibrompropan }
\end{aligned}
$$

22. Bạn thư giài thích

1. Có hiện tượng gì xảy ra khi bị ong, muối, kiến đốt? Theo kinh nghiệm dân gian, thường làm gì để hiện tượng đó mau mất đi? Tại sao làm thê?
2. Khi muối dưa, tạo sao người ta:

- Thường dùng dưa già và để héo càng tốt?
- Thường cho thêm một it nưóc dưa chua?
- Thường cho thêm hành lá?
- Thường cho thêm một ít đường?

Tại sao phải nén cho dưa ngập trong nước? Nều cho nhiều muối quá hoạac ngược lại, lượng muói thiếu thì sao?

Quá trình hóa học gì xảy ra khi muối dưa?
3. Muốn làm sữa chua, gây mè người ta thường dùng nguyên liệu gì? Cách làm cụ thế? Hãy giai thích qua trình làm sữa chua, gây mẻ.
4. Tại sao khi nấu canh cá người ta thường cho thêm chất chua (từ quả dọc, quả me, giấm bỗng...)? Hãy giải thích cách nấu trên.
5. Tại sao mỡ để lâu hay có mùi hôi và làm thế nào để hạn chế hiện tượng này? Tại sao khi rán mõ để quá lửa lại hay có mùi khét. Hãy giải thích hiện tượng này.

Tại sao có nhiều người phải ān theo chễ độ ān kiêng mõ. Có thể thay mỡ bà̀ng chất nào khác khi chế biến thức ăn?
6. Thế nào là chất màu thực phẩm tự nhiên? Làm thế nào để cớ chất màu thực phẩm tự nhiên có màu đỏ, màu vàng, màu xanh? Tóm tắt cách chế biến các màu trên? Nêu ứng dụng của các màu đó?
7. Từ bột mì có thể chế biến thành giò chả được không? Nêu cách làm cụ thể.
8. Tinh bột, thậm chí ngay cả bột sấn cũng có thể chế ra được đường gọi là kẹo mạch nha phải không? Hãy giải thích và nêu nguyên tác làm?

- Giaỉ thíć)

1. Trong nọc một số còn trùng như ong, kiến, muỗi... hay ở một số lá ngứa như lá han, có chứa axit fomic HCOOH gây bỏng rát, ngứa (Fomic có nghiaa là "kién"). Ngoài ra, trong nọc ong còn có cả $\mathrm{HCl}, \mathrm{H}_{3} \mathrm{PO}_{4}$, histamin, cholin, triptophan...

Khi bị ong dốt, da sẽ bị phồng và rất rát. Nhân dân thường có kinh nghiệm là bột vôi vào vết ong đốt. Ỏ đây có phản ứng trung hòa xảy ra làm mất HCOOH và hiện tượng rát bỏng cũng mất luôn.

$$
2 \mathrm{HCOOH}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow\left(\mathrm{HCOO}_{2} \mathrm{Ca}+\mathrm{H}_{2} \mathrm{O}\right.
$$

2. Trong ki thuật muối dưa, cần chú ý:

- Khi rửa dưa cần phải nhẹ nhàng không để dưa bị nhàu nát vì vi khuẩn gây thối rữa để xâm nhập vào, gây khú dưa.

Mặt khác:

- Thường dùng dưa già vì trong dưa già, hàm lượng đường nhiều hơn. Nếu phơi héo càng tốt vì nước bay hơi, hàm lượng đường trong dưa càng cao, dưa càng chóng chua.
- Thường cho thêm một it nước dưa chua vì trong đó có nhiều men lactic là chất xúc tác sinh học giúp cho quá trình biến đởi đường thành axit lactic là chất có vị chua trong dưa muối (men lactic cũng có ở trong không khí). Nếu muối dưa vào mùa rét, nhiệt độ thấp, không thuận lọ̣i cho quá trình lên men thì việc cho thêm một ít nước dưa chua rất cần thiết.
- Việc cho thêm hành lá có hai tác dụng: làm cho dưa thém thơm ngon, mặt khác, hành lá có tính chất sát trùng, hạn chế sự phát triển của vi khuẩn gây thối rữa làm dưa khú.
- Thém một ít đường khi muối cũng đế cho dưa dễ chua.
- Khi mưói dưa phải nén cho dưa ngập trong nướe vì đây là quà trình biến đổi sinh hóa dưới tác dụng của men lactic là loại men kị khí. Nếu cho nhiều muối (NaCl) quá thì dưa mặn, lâu chua. Ngược lại, nếu cho thiếu muối, thì dưa lại dễ bị khú vì vi khuả̉n gây thối rữa hoạt động mạnh.

Quá trình hóa học xảy ra chủ yếu là:
3. Nguyên liệu để làm sữa chua là sữa bột, sữa đạ̣c có đường (sữa hộp). Nếu dùng sữa bột phải cho thêm đường. Pha một cốc sữa (như vẫn pha uống hàng ngày) bằng nước sôi để nguội, cho thêm vào đó một thìa sữa chua (men gốc lactic) khuấy đều, đậy
kín lại, để ở nhiệt độ thường từ $8 \mathbf{- 1 0}$ tiếng sẽ được lactic. Chất đạm (protein) có trong sữa tạo điều kiện cho men lactic phát triển. Quá trình hơa học giống như khi muối dưa.

Để gây mẻ (chất chua để nấu canh cua, ốc...) người ta dùng nguyên liệu là cơm nguội và một số mẩu xương đã ninh nhự.

Cách làm: lấy com nguội còn thừa và một miếng xương nhỏ (đã ninh) cho vào một 1 ọ, binh (cho gần đầy), để từ $3-5$ hóm sẽ được mè.

Muốn mau chua cũng cho thêm vào một it mẻ đã gẫy rồi (men gốc). Khi án hết lại cho tiếp nguyên liệu như trên.
4. Chất chua (axit lactic có trong nước dưa, mẻ, axit axetic có trong giấm, axit xitric có trong chanh...) rất có "duyên" với cá. Nó nâng cao chất lượng (hương vị) của mớn canh cá. Mặt khác, hạn chế chất tanh.

Trong chất tanh của cá có chứa hởn hợp các amin: đimetyl $\operatorname{amin}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ và trimetyl $\operatorname{amin}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$, có tính bazo yếu. Các chất chua dùng để nấu canh cá đều là chất axit hữu cơ, chúng có phản ứng với các amin tạo thành muối, do đó làm giảm hoạc làm mất vị tanh của cá. Thí dụ:

$\left.\mathrm{CH}_{3} \mathrm{COOH}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{2} \mathrm{~N}^{2} \mathrm{CH}_{3}\right)_{2}$

5. Mõ là một hốn họp các este trung tính, đơn giản hoạac hớn tạp, của glixerin và các axit béo. Do đó còn gọi mõ là các glixerit.

Mỡ đê lâu có thể có các hướng chuyển hơa sau:

- Phản ưng thủy phân có xúc tác của men lipaza sinh ra glixerin và các axit béo.
- Phản ứng oxi hóa các nối đôi của axit không no tương tự nhự phản ứng oxi hơa các olefin, sinh ra hợp chât chứa oxi như poliol hoạac anđehit.

Các phản ứng trên có sự tham gia của men, O_{2} trong không khí, và $\mathrm{H}_{2} \mathrm{O}$ làm mỡ có mùi hôi, giảm chất lượng.

Vi vậy để bảo quản tốt mỡ, ta nên:

- Không để mỡ lẫn nước, lọ phải thật khô.
- Không để mỡ tiếp xúc nhiều với không khí (đậy kín) để chố mát, không cho ánh nắng. chiếu vào (nếu có sē sinh nhiệt, phản ứng phân hủy mỡ diễn ra nhanh hơn). Nếu mõ đã bị ôi, ta có thể làm giảm mùi hôi bà̀ng cách:
+ Cho thêm nước nơng (khoảng từ 0,5-1\%) thẻ tích nước mỡ nguội rồi đun mạnh, nước bốc hơi lên sẽ kéo theo mùi hôi bay bớt đi.
+ Khi nước đã bốc hơi hết, tiếp tục đun nhỏ lửa, cho vào một ít lát hành tươi phi lên. Mưi thơm của hành phi làm cho mỡ trở thành thom ngon.

Khi rán mỡ ở nhiệt độ quá cao, glixerin (do phản ứng thủy phân mỡ sinh ra) bị nhiệt phân hủy loại ra hai phân tử $\mathrm{H}_{2} \mathrm{O}$ rồi đồng phân hóa thành anđehit acrilic (còn gọi là acrolein).

Acrolein là một anđehit không no, có mùi khét, xốc, kích thich mạnh, dể nhận ra khi đun cháy dầu mỡ.

Người mác bệnh huyết áp cao phải tránh ăn mỡ vi khi đó axit béo no vào máu phản ứng vá́i chất cholesterol có trong máu tạo thành este không tan gây ra chứng xơ cứng động mạch. Nếu dùng dầu thực vật thì este của axit không no ờ trạng thái lỏng không cản trở sự lưu huyết trong mạch máu.
6. Chất màu thực phẩm tự nhiên (xanh, đó, vàng) có sãn trong các mô thực vật, có thể tách chiết ra, không độc, dùng nhuộm màu cho thực phẩm, dược phẩm.

Chất màu xanh lấy từ lá cây không độc như rau muống, lá tre nứa. Sác tố màu xanh tự nhiên còn gọi là chất diệp lục clorofin có công thức phân từ: $\mathrm{C}_{55} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{Mg}$

Cách tách clorofin: lấy lá tre, lá rau muống rửa sạch để ráo, cho lá vào bình có náp kín rồi rớt cồn vào cho ngập lá. Dể yên vài ngày, sác tố màu xanh sẽ tan vào trong cồn. Đổ nước vôi trong vào cồn diệp lục (tỉ lệ $1 / 1$) để yên vài giờ, chất diệp lục sẽ láng xuống. Lọc qua phễu Buchner thu được chất diệp lục, dạng bột nhão. Hong khô ở chỗ mát, thoáng gió (giống như hong bột sấn dayy.

Chất màu đỏ thực phẩm cơ thể lấy từ gấc hoạac lá diễn. Màng hạt gấc chưa khoảng 8% chất dầu màu đỏ máu, tên là caroten $\mathrm{C}_{40} \mathrm{H}_{5 \text {; }}$ là chất tiền vitamin A , khi vào cơ thể sẽ chuyển thành vitamin A.

Cách làm: bổ đôi quả gấc chín, lấy hạt, dùng dao tách màng hạt đi, phần thịt nhuyễn màu đỏ còn lại đem ngâm trong cồn, bỏ hạt di.

Lá diễn xử lí như lá tre, lá rau muống.
Màu vàng chanh lấy từ hạt dành dành. Trong hạt dành dành chứa chất gacdenin $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$, khi thủy phân cũng cho sắc tố màu vàng.

Bột hạt dành dành đem sác kĩ với nước được dung dịch dặc màu vàng. Lọc trong (để láng lọc gạn hay lọc qua bông, giấy lọc) rồi cố cạn sẽ được chất keo dẻo màu vàng. Khi dùng, lấy keo dành dành hòa tan vào nước.
7. Những nhà sản xuất giò chả thường độn thêm một lượng nhỏ bột vào thịt lọn thoạac bò) đã xay hoặc giã nhuyễn để hạ giá
thành giò, chả...
Nhưng đó không phải là cách ché biến giò chả từ bột mi.
Trong bột mì có chứa một lượng protein khoảng $8-9 \%$ gọi là gluten. Trước hết cần tách gluten ra khỏi bột mì.

Cách tách: Cho bột mì vào chậu (tù $1-2 \mathrm{~kg}$). Dun nước đến khoảng $45^{\circ} \mathrm{C}$, cho vào bột mì để được khối dẻo. Dể yên khoảng 1-2 tiếng cho nước ngấm đều vào bột. Dặt rá có chứa bột đã ủ với nước lên trên một cái xoong. Vẩy nước âm ấm $\left(40^{\circ} \mathrm{C}\right)$ lên bột, tay nhào xát bột. Phằn tinh bột sẽ lọt qua rá xuống xoong, còn lại trên rá là gluten. Gluten thu được ở dạng nhão, quánh; thêm nước má̛m ngon, mì chính gói lại theo kiểu gói giò rồi luộc. Muốn làm chả, dàn mỏng gluten lên lá chuối, hấp với nước cho chin, nhuộm màu rồi rán sê được chả.
8. Từ tinh bột có trong ngũ cốc đều có thể chế ra mạch nha. Trước kia các cụ thường làm mạch nha từ gạo nếp, mầm mạ. Ngày nay người ta thay gạo nếp bằng bột sắn (sấn thườngi).

Trong mầm mạ, ngay cá mầm ngô có chứa men amylaza có tác dụng xúc tác biến tinh bột thành đường.

Nguyen tác làm mạch nha:
Lấy bột sấn hòa với nước lạnh, đun chín thành hồ loãng. Để nguội đến $65-70^{\circ} \mathrm{C}$, cho mầm mạ vào, ủ nóng qua đêm, sáng hôm sau tù̀ hồ loãng chuyển thành dung dịch đường. Cô cạn dung dịch đường thu được kẹo mạch nha. Nếu dùng bột sân tinh, hiệu suất kẹo nha thu được tới 75%. Thành phần chủ yếu của kẹo nha là mantozo $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, glucozo $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

23- Hỏi và đáp

Hòi: Khi nào có oxi tỏa ra trong phản û́ng cháy?

Dáp: Thổi khi CO_{2} vào $\mathrm{Na}_{2} \mathrm{O}_{2}$ nó bùng cháy theo phản ứng sau:

$$
2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{CO}_{2}=2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2}
$$

Hỏi: Dọc tên một chất lỏng mà nồng độ đậ tới 100% khi thêm nước vào?

Dáp: Oleum
Hỏi: Tìm một phản ứng mà trong số các chất tham dự và tạo thành có đủ cả bốn loại hợp chất vố cơ.

Dáp: Phản ứng trung hòa:
axit + bazơ $=$ muối + nước $\left(\mathrm{H}_{2} \mathrm{O}\right.$ thuộc loại oxit $)$
Hỏi: Dọc tên một đơn chất, mặc dù không tác dụng với chất khác vẫn thực hiện một phản ứng hóa học.

Đáp: So với O_{2}, phân tử O_{3} rất kém bền, khi va chạm sẽ nổ do dễ phân hưy theo phàn ứng:

$$
\mathrm{O}_{3}=\mathrm{O}_{2}+\mathrm{O}
$$

Hỏi: Có bình đựng CaC_{2} làm thế nào để biến nó thành CaCO_{3} mà không cần dùng đến một hơa chất nào khác?

Dáp: Mở bình sẽ có tương tác giữa CaC_{2} với hơi nước và khí CO_{2} có trong không khí:

$$
\begin{gathered}
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \uparrow \\
\mathrm{CO}_{2}+\mathrm{Ca}_{2} \mathrm{OH}!_{2}=\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Hỏi: Có hai đoạn dây đồng nhỏ và một củ khoai tây tưoi. Làm thế nào để xác định được các cực của một acquy (cực nào âm, cực nào dương).

Dáp: Nối dây đúng với các cực của bình acquy rồi cắm hai đầu dây còn lại vào hai đầu của củ khoai tây. Sau một thời gian ngán, chổ khoai tây nào tiếp xúc với đồng trở nên có màu xanh (da trời) thì chố đó nối với cực dương của acquy vì ơ đó giải
phóng O_{2}, nó tác dụng với Cu thành CuO rồi thành $\mathrm{Cu}(\mathrm{OH})_{2}$ có màu xanh.
O_{2} được giải phóng là do xảy ra quá trình điện phân, dung dịch điện li là các muối khoáng hòa tan trong nước của củ khoai tây.

Hỏi: Hãy nêu nãm phương pháp hơa học có thể cố định được đạm từ không khí và cho biết ý nghìa của từng phương pháp.

Dáp: 1) $\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3} ; t^{\prime}=400 \div 600^{\circ} \mathrm{C} ; p=100 \div 200 \mathrm{~atm}$ và có chất xúc tác (phương pháp dùng phổ biến).

$$
\text { 2) } \mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO} ; t^{\circ}=3000^{\circ} \mathrm{C}
$$

(phương pháp chỉ có ý nghia lí thuyết vì hiệu suất rất thấp).

$$
\begin{aligned}
& \text { 3) } \mathrm{N}_{2}+\mathrm{CaC}_{2}=\mathrm{CaCN}_{2}+\mathrm{C} ; t^{\circ} \approx 1000^{\circ} \mathrm{C} \\
& \mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{CaCO}_{3}+2 \mathrm{NH}_{3} ; \mathfrak{t}^{\circ}>100^{\circ} \mathrm{C}
\end{aligned}
$$

(Phương pháp cổ điển hiện nay không dùng)
4) $6 \mathrm{Li}+\mathrm{N}_{2}=2 \mathrm{Li}_{3} \mathrm{~N}$

$$
\mathrm{Li}_{3} \mathrm{~N}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{NH}_{3}+3 \mathrm{LiOH}
$$

Phương pháp không có ý nghīa thực tiển, vì Li nà̀m phân tán ở các quặng khi khai thác nên là kim loại dắt tiền và thường được dùng để điều chế các họ̣p kim quý.

$$
\text { 5) } \begin{aligned}
\mathrm{N}_{2}+4 \mathrm{~V}(\mathrm{OH})_{2}+4 \mathrm{H}_{2} \mathrm{O} & =\mathrm{N}_{2} \mathrm{H}_{4}+4 \mathrm{~V}(\mathrm{OH})_{3} \\
\mathrm{~N}_{2}+6 \mathrm{~V}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O} & =2 \mathrm{NH}_{3}+6 \mathrm{~V}(\mathrm{OH})_{3}
\end{aligned}
$$

Phương pháp có nhiều triển vọng trong tương lai vì thu được hai sản phẩm $\mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{H}_{4}$ đều quý đang ở giai đoạn nghiên cứu.

Hỏi: Tại sao khi cho một sợi dây đồng đã cạo sạch vào bình nước để cám hoa thì hoa sẽ tươ lâu hơn.

Dáp: Đồng kim loại sể tạo ra một số ion Cu^{2+} trong nước tuy rất it (vi lượng) nhưng sẽ làm cho cuống các cành hoa đơ bị thối trong nước do đó đỡ làm tác các mao quản dẫn nước lên
cánh hoa nên hoa tươ lâu hơn. Nếu không dùng đoạn dây đồng thì phải cắt bỏ phần thối của cành hoa hàng ngày, hoa mới tươi lâu.

24- Vui cữ̇...

Giờ thí nghiệm của sinh viên
Một hôm có một người hỏi cán bộ phòng thí nghiệm xem trong giờ thí nghiệm thì sinh viên làm gì, anh ta bèn trả lời:

- Họ lấy một cái lọ lớn đựng một hơa chất gì đấy đem rớt vào những lọ nhỏ hơn, lắc lên, quan sát. Rồi họ lại rớt sang những lọ nhỏ hơn nữa, lại lác lên, quan sát...
- Và rồi sao nữa?
- Rồi thì họ đem tất cả các lọ đó về nhà.

Một dung dịch
Có một nữ sinh thi rớt môn Hóa. Tối lại đến nhà riêng thày giáo xin... nâng điểm.

Thấy cô gái cứ sụt sùi, nước mắt ngắn, nước mát dài, thày giáo liền hỏi:

- Em hãy cho biết dung dịch nào ăn mòn kim loai?
- Thưa thày... axit,
- Dung dịch nào ăn da?
- Thưa thày... xut.
- Thế dung dịch nào ān điểm và ản mòn nhân cách?

Cô gái đỏ bừng mặt, vội cúi xuống lau khô những giọt "dung dịch" từ mát mình.

Hóa là vợ thày
Có một thày dạy Hóa, hè nām ấy xây dựng gia đình với một
cô giáo ở trường bên cạnh tên là cô Nguyễn Thị Hóa.
Vào đầu nảm học mới, trong giờ nhập môn Hóa ở lớp 8, sau khi say sưa phân tích giáng giải Hóa học là gì, tầm quan trọng, ý nghia, vai trò của môn Hóa, thày liền đạt câu hỏi:

- Bây giờ thày hỏi các em Hóa là gì nào?

Một em vào loại tếu nhất lớp liền trả lời:

- Hóa là vợ thày a.

Cà lớp cười ồ lên. Thày bị bất ngờ nên lưng túng, song trấn tỉnh được ngay, thày liền nghiêm trang nơi:

- Ò, coi là được. Các em ạ! Thày yêu thích Hóa ngay từ hồi còn học ở phổ thông, lên đại học được hiểu biết nhiều về Hóa thày lại càng yêu mến Hóa. Dến bây giờ thì thày cám thấy là đời thày không thê thiếu Hóa được...

Cả lớp im tắp, không còn em nào dám tủ̉m tỉm cười. Thày Hóa thật có tài biến hơa.

25- Vui... Vui...

Hóa học là gì?
Một hôm, có người tò mò, hỏi thăm người cấp dương của nhà hóa học nối tiếng Berzelius xem công việc chính của ông là gì thì là ta nói ràng:

- Ò! Tơi không thể nói chính xác được. Ông ấy lấy một cái chai lớn đựng một chất lỏng gì đấy đem rớt vào một cái chai nhỏ, lấc lên, xong lại rót vào một cái lớn hơn, lại lác lên nhiều lần rồi lại khuấy lên, rồi lại rớt vào một chai rất nhỏ.
- Va rồi sao nưa?
- Rồi thì ông ta đem đó tất cả đi!

Chất gị?
A- Này Ca là kí hiệu của chất gì?
B. Canxi!

A- Thér còn Fe ?
B- Vậy mà cũng không biết! Fe là sátt!
A- Vậy $\mathrm{CaFe}, \mathrm{CaCaO}$ là chất gì mà hồm nào cũng thấy cậu và "nàng" đi tim hiểu thê?

Vọ chồng nhà giáo dạy hóa sau bũa com

- Chồng: Hôm nay em điều chế được nôi canh có nồng độ muối cao quá!
- Vợ: Còn anh, vì đã tổng hụp gạo và nước ờ nhiệt độ hoi cao và thời gian phản ứng kéo dài quá nên com hơi bị cacbon hóa đấy.

Khách hàng lưỡng lự mãi trước một chiếc áo len và cuối cùng đofnh bạo hỏi tgười bán hàng:

- Cô tin chắc toàn bộ chiếc áo này là len nguyên chắt chứ?
- Chả̉ng dám giấu bác có mấy chiếc cúc làp bằng chất dẻo.

Thầy Hanxen được đưa vào cấp cứu bệnh viện.

- 'Iai nạn giao thōng à?- Người bên cạnh hỏi.
- Không, lôi in sai trong sách hương dẫn thí nghiệm hóa học.
- Này, cậu uống thuốc gì mà cứ nuốt hết viên này đến viên khác thế?
- À, thuốc giảm đau ý mà.
- Ấy chết, cậu bị đau gì vậy?
- Chả đau gì cả. Chỉ có điều hôm nay chúng hết thời hạn sử dụng.
- Bán cho tôi mấy cái rổ tre!
- Tôi khuyên bà nên mua rổ nhôm này còn hơn.
- Ôi mỏng lắm, chóng hỏng!
- Nhưng khi hơng còn bán được tiền!

- Làm ơn lấy hộ tôi con dao sác kia?
- Dể làm gì vậy?
- Dể tôi làm đứt tay... còn một ít cồn iot, không lẽ vứt đi thi phí..
- Tại sao con nghịch xà phòng làm bẩn hết nước của mẹ
- Không phải con nghịch đâu! Thấy nước bẩn, con lấy xà phòng rửa nước đấy. Như là mẹ rửa ự bẩn của con bà̀ng xà phòng ý mà.
- Ö! Tại sao mặt chị sưng lên thẽ này?
- Đó là tác dụng của kem dưỡng da chớng gầy của con trai tôi mới điều chế đấy. Chị có muốn dùng không?
- ???

Nhà thông thái thuyết trình ở Hội nghị Bảo vẹ môi trường:
"Tại sao người ta không nghi đến việc xây dựng các thành phơ ờ nông thôn nhị? đ̉ đó không khí trong lành, lo gì ô nhiễm".

Ca hội trường cười ầm lên.

Thông báo
"Đã phát hiện được một thứ dung môi tuyệt hảo và nhiều vô kể, chỉ có đại dương mới chứa nồi! Đó là đại dương".

Nhà hơa dược
Thưa các quý vị, tôi đã thành cồng trong việc chế ra thứ thuốc chống muối li tưởng. Chi sau lphút tác dụng, người ta sẽ không thấy, không biết muối đốt là gì nữa.

Trong quán cà phé

- Này bà chủ, cà phê gì mà đắt vậy?
- Chú em thông cảm, hiện nay không phải là mùa muồng muồng!

Ông khách giận giû đấm bàn quát người phục vụ:

- Cà phê thé này mà anh bảo đạc à?
- Thưa ông đúng vậy. Nếu không đã chả̉ng làm ông bị kích thich mạnh đến thế.

Người phục vụ tới tính tièn hỏi:

- Ống vừa dùng cà phê hay ca cao?
- Tơi chịu - Khách cười chế giễu - Chỉ thấy mùi dầu hỏa
- Vậy là cà phê - Người phục vụ điềm nhiên nơi- Ví ca cao của chúng tôi bị lẫn mùi má́m tôm cơ!

Vọ̣: Anh hãy hứa với em đi: đừng bao giờ điều chế chất gi thay thế cho tình yêu!

Chồng: Ư. Nhưng nếu có thì anh sẽ không dùng ở đây đâu, mà sẽ ở nỡ khác, em yên tâm đi.

Những chất gì của hơa học mà đời thường hay dùng? Bạn hãy xem nhé.

- (Anh ta có thần kinh) vững như thép (Fe)
- Quý như vàng (Au)
- (Den) như bồ hóng (hay đen như than) (C)
- Trơ như đá (CaCO_{3}) vững như đồng (Cu)
- Gạo châu, củi quế
- Mềm như nước ($\mathrm{H}_{2} \mathrm{O}$)
- (Giọng) chua như giấm ($\mathrm{CH}_{3} \mathrm{COOH} 5 \%$)
- Ngọt như mía lùi (hay đường phèn) (glucozo...)
- Bạc như vôi $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$
- Xám ngoét như chì (Pb)
- Tráng như trứng gà bóc (tác dụng của nhiệt lên protit anbumin)...

26. Vạt chát biến di câu?

Có anh bạn đang tập việc ở phòng thí nghiệm một hôm anh làm hai việc sau:

Việc thứ nhất là sấy khô muối. Anh lấy lượng muối cần làm khô đổ vào cốc thủy tinh rồi đặt vào trong tủ sấy.

Việc thứ hai là tinh chế muối. Anh lấy lự̛̣ng muối cần tinh
chế (làm sạch) hòa tan vào nước rồi lọc để loại bỏ tạp chất rắn không tan. Dung dịch thu được anh đố vào cốc thủy tinh chịu nhiệt rồi đặt lên bếp điện đưn để làm nước bay hoi hết. Yên tâm với việc sấy khô muối và cô cạn dung dịch anh chuyển sang làm một số việc khác.

Đến gần trưa anh mở tủ sấy và ngạc nhiên vì muối trong cốc đã biến mất. Hốt hoảng anh chạy lại chỗ cô cạn dung dịch thì lạ thay nước đã bay hơi hết nhưng trong cốc không có một hạt muối nào kết tinh.

Anh vò đầu bứt tai suy nghĩ nhưng không sao hiểu nổi. Theo định luật bảo toàn vật chất thì vật chất không tự sinh ra và cūng không tự biến đi co mà!

Vậy vật chất biến đi đâu trong hai thí nghiệm trên? Xin mời các bạn thử giải đáp.

- Gaiá táp

Muối mang sấy là muối $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ hoạ̣c $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$. Với muối $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ ở ngay nhiệt độ thường đã bị phân hủy, nhưng ở khoảng $50^{\circ} \mathrm{C}$ thì phân hủy nhanh chóng:

$$
\mathrm{NH}_{4} \mathrm{HCO}_{3}=\mathrm{NH}_{3} \uparrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O} \uparrow
$$

Với muối $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ bị phân hủy ờ $58^{\circ} \mathrm{C}$:

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=2 \mathrm{NH}_{3} \uparrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O} \uparrow
$$

Do muối phân hủy ra các khí và hoi nước bay đi hết nên trong cớc không còn lại chất gì.

Muối mang tinh chế bà̀ng phương pháp kết tinh lại là muối $\mathrm{NH}_{4} \mathrm{NO}_{2}$.

Khi đun nóng dung dịch $\mathrm{NH}_{4} \mathrm{NO}_{2}$ nó phân hủy:

$$
\mathrm{NH}_{4} \mathrm{NO}_{2}=\mathrm{N}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}
$$

Người ta thường đun nơng dung dịch amoninitrit đặc để điều chế N_{2}. Vi phàn ứng phân hủy $\mathrm{NH}_{4} \mathrm{NO}_{2}$ phát nhiệt mạnh nên chi cần đư nơng lúc đầu và về sau phải làm lạnh để hạn chế phản ưng. Vì vậy khi đun cạn hết nước thì trong cốc cũng không còn lại chất gì.

MỤC LỤC

Trang

Lời nói đầu 3
Phần một
THÍ NGHIẸM VUI VÀ ẢO THUẤT HÓA HOC
1- Không có lửa... mà lại có khói 5
2- Nhóm bếp than bằng đũa thủy tinh 5
3- Lửa và khói 6
4- Mưa lửa 6
5- Trứng tự chui vào bình 7
6- Thu khới và tàn của điếu thuốc lá 9
7- Tạo ra màu hồng bà̀ng nước lã 10
8- Làm đổi màu hoa giấy 10
9- Làm đổi màu hoa thật 12
10- Vẽ tranh bằng khói thuốc lá 13
11- Mực bí mật 15
12- Chụp ảnh bà̀ng bàn là (bàn ủi) 15
13- Đỏ kết hợp với trắng thành xanh 15
14- Xanh thành đỏ, đỏ thành xanh. Trong hóa tráng, trấng hóa trong 16
15- Từ một chất pha được hai màu 17
16- Nóng và nguội cũng khác màu 17
17- Chiếc khăn tay kì lạ 17
18- Bức tranh biến đổi màu sá́c 18
19. Bức tranh chỉ thời tiết 19
20. Điệu vũ natri 21
21- Natri đốt cháy khí cacbonic 21
22- Bắn cháy tàu chiến địch 22
23. Cháy trong khí cacbonic 22
24- Hóa than mà không cần đốt cháy 23
25- Mực bí mật 23
26- Châm nến không cần lửa 24
27- Những chiếc cốc "thần" 25
28- Ngọn lửa hiện 25
29- Thở ra lửa 26
30- Các loại mực bí mật 28
31-"Tuabin khí" 29
32. Đài phun nước 29
33- Đốt cháy bằng khi cacbonic 30
34- Trứng tự quay 30
35- Khí ẩn hiện 31
36- Chất phát sáng và tự bốc cháy 32
37- Cháy ở dưới \cdot nước 33
38- Phép màu của nhà thờ Jerusalem 33
39- Dòng chữ tự phát sáng 34
40- Đốt cháy bằng nước (5 thí nghiệm) 35
41- Đốt nước đá cháy 38
42- Åo thuật biến đổi màu sắc 38
43- Thuốc pha màu vạn năng 39
44- Nóng lạnh làm thay đổi màu của dung dịch 40
45- Những chất thay đổi màu theo nhiệt độ 41
46- Bát dung dịch hiện màu dúng thời gian quy định 42
47. Bắt kết tủa xuất hiện đưng thò̀i gian quy định 43
48- "Nhiệt kế hớa học" 44
49- Tinh thể màu nhiệm 46
50- Làm "nước" đơng bāng chớp nhoáng 46
51- Thiên thạch trong óng nghiệm 47
52- Dùng đường làm thuốc súng 48
53- Nhuộm một lần thành cờ đỏ sao vàng 48
54- Dèn không ngọn 49
55- Cháy ở dưới nước 50
56. Dốt cháy đường 50
57. Sư cháy trong lòng chất lỏng 51
58. Làm cho nước "sôi" bà̀ng một sợi dây kim loại 51
59- Chất "chế ngự" phản ứng 52
60- Dòng chữ từ đâu xuất hiện? 52
61. Những chất kết tủa kì lạ 53
62- Ngọn lửa xanh lục 55
63. Thuốc "lọc máu" 55
64- Viết không cần mực 56
65. Dung dịch muôn màu 57
66- Dung dịch liên tục đổi màu 57
67. Cờ nhiều màu 58
68- Quấy "nước lã" thành "rượu mùi" 59
69. Lá́c "nước lã" thành "màu đỏ" 59
70- Thuớc hiện hình 60
71- Những chiếc đũa có phép lạ 60
72- Biến "mẩu phấn" thành "con rắn" 61
73- Cắt chảy máu tay 62
74- Lột da bàn tay 63
75- Dốt cháy bàn tay 64
76- Đốt khăn không cháy 64
77- Phát hiện dấu tay 65
78- Dung dịch phát quang màu dỏ 66
79. Kết tinh phát sáng 66
80- Dung dịch huỳnh quang 67
81. Dung dịch phát quang màu xanh 67
82- Dung dịch phát sáng trong bóng tối 69
83- Chiếc bình phát sáng 69
84- Tráng và đen 70
85- Trái tim thủy ngân 70
86- Biến đồng thành "bạc" 72
87- Từ thiếc chế ra "vàng" 72
88- Điều chế vàng hòa tan 74
89- Tấm thảm bay 75
90- Núi lửa phun 76
91- Lại núi lửa 76
92. Giấy... biết chạy 78
93- Vườn cây cảnh trong chậu thủy tinh 78
94- Phong cảnh mùa đông xứ lạnh 80
95- Phong cảnh mùa đông nhiệt đới 80
96. Cây Diana 81
97- Bão tuyết 81
98- Phong vũ biểu hóa học 82
99- Pháo dây đơn giản 83
100- Pháo hoa 83
101- Pháo sáng 83
102- Pháo dây nhiều màu (pháo hoa) 84
103- Pháo hoa từ miệng ống nghiệm 85
104- Pháo hoa trên mặt bàn 85
105. Pin bút chì 86
106. Trong khói thuốc lá có những chất gì? 86
107- Vị của các chất ra sao? 87
108- Khắc lên sát, thép 88
109- Mực viết lên thủy tinh 89
110- Thu hồi hóa chất thải 90
111. Diều chế phèn nhôm từ đất sét hoạ̀c cao lanh 91
112- Phép màu nhiệm của các viên long não 92
113- Màu đỏ hơa thành màu vàng nhưng chất không thay đổi 93
114- Làm thay đổi màu bức ki họa 93
115- Khác chữ, vẽ hình trên kính 93
116- Những điều lí thû về nước 95
117- Đánh bóng đồ bạc 98
118- Điều ché dung dịch, giư hoa tươi lâu 99
119- Chiếc lá tình cám 99
120- Nến màu 101
121- Mực và bút viết trên thủy tinh; đồ sứ 104
122- Hiện tượng "ma trơi" 106
123- Cây phủ tuyết 107
124- Chiếc đũa tạo lưa 107
125- Chất làm sôi dung dịch 108
126- Bong bóng xà phòng bay lơ lửng 108
127- Súng hơi 109
128- Quả cầu lửa 109
129. Lắc cũng làm đổi màu dung dịch 110
130. Dung dịch làm nước đóng băng 111
131- Nhiệt độ làm thay đổi màu của dung dịch 111
132- Lửa màu lục 111
133-Chũ lửa 112
134. Làm màu xanh xuất hiện 113
135- Ngọn lửa phát ra âm thanh 113
136. Dập tảt rồi thắp lại ngọn nến bà̀ng khí 114
137- Phát hỏa bà̀ng nước 115
138- Ngọn lửa không gây bỏng 116
139- Vật nổi trên các chất lỏng khác nhau 116
140- Dập bình thủy tinh 117
141- "Nuôi trồng rong rêu" 118
142- Rêu den 118
143- Những quả trứng có phép lạ 119
144- Tiếng nổ dưới chân 120
145- Cháy ở dưới nước 121
146- Bức vẽ bà̀ng lửa 121
147- Ngọn lửa lạnh 122
148- Vẽ ngựa vằn 123
149- Lác bột tráng thành bột vàng 123
150- Làm rượu biến thành nước, nước thành sữa 124
151- Làm mất màu rượu Whisky 124
152- Ăn "lửa" 125

Phần hai

CHUYẸN VUI VÀ GIAI THOAI VỀ CÁC NHÀ HÓA HOC

1- Phát minh do... ngũ quên 127
2- Những đặc điểm chính xác 127
3- Sự dũng cảm của nhà hóa học 128
4- Mưu cao của nhà hóa học 128
5. Giấc mơ của Kekulé 129
6. Cấu tạo...như những chú khì! 129
7- Lời tiên khi không tự giác 130
8- Không hẹn mà cùng nhau... 131
9- Đồng tác giả phát minh 131
10- Phát minh từ trong đống sắt gì 132
11- Nhìn những chuỗi kim cương lấp lánh... 132
12- Chất khí chũa bệnh duy nhất 133
13. Khi cười 134
14- Hóa học khác toán học ở chỗ nào? 134
15- Cứ để cho anh ta rửa chai lọ! 135
16- Đời tôi là một chuối "nếu nhu" 135
17- Quặng Landau 136
18- Chỉ đơn giản là tôi ứng dụng hớa học 137
19- Sự hiểu lầm thú vị 137
20- Chàng phụ tá láu linh 138
21- Archimedes điều tra 139
22- Nhà hóa học và các ngành khác 140
23- Nhà hơa học thường sống lâu 141
24- Nhà hóa học nghiên cứu 141
25- Một chuyện tình - cảm động nhưng... 142
26- "Máy tính điện tử đấu tiên" trong hóa học 143
27- Vâi chuyện tức cười tại lễ ki niệm nguyên tó flo 144
28- Gali và hai nhà bác học 145
29- Trong cuộc đua khám phá ra oxi 146
30- Lịch sừ đặt tên các nguyên tố 149Phằn ba
HOC MÀ VUl... VUI MÀ HOC

1. Hóa học là gì? 161
2. Bài ca hóa trị (1) 162
3. Bài ca hóa trị (2) 163
4- Natri (Na) 164
5- Cô gái Nito 165
4. Khối lượng nguyên tử 167
7- Bài ca hóa hữu co 168
5. Dãy điện hóa (1) 170
9- Dãy điện hơa (2) 170
10- Mấy lời về dãy điện hớa 170
6. Tinh tan của muối 172
12- Benzen 173
7. Dây đồng đẩng của metan 173
8. Thác mác 173
9. Chất gì? 176
16- Khí gi? 176
17- Axit gi? 179
10. Muối gi??? 184239
19- Những câu đố về NaCl 205
20- Nguyên tố nào nhất 208
21- Bạn thử giải đáp 212
22- Bạn thử giaii thích 214
23- Hỏi và đáp 220
24- Vui cười 223
25- Vui... Vui... 224
26- Vật chất biến đi đâu? 228

PGS., PTS. NGUYỄN XUÂN TRUỜNG

HÓA HỌC VUI

Chịu trâch nhiệm xuấı bản: PGS, YTS. TÔ ĐĀNG HẢI

Biên tập:

Síra bài:
Chế bàn:
Trinh bạ̀ bia:

NGUYỄ HUY TIEN NGUYỄN HUY

TRUNG DU
HUONG LAN

Nhà xuft bán Khoa hoc và Ky thuif
70 Tran Hung Daco - Hà N8i

In 1000 cuốn, khổ $14,5 \times 20,5 \mathrm{~cm}$, tại PX2 Công ty in Thương Mại. Giấy phép xuất bản só: 334-26-16/6/1999.
In xong và nộp lưu chicẻu tháng 1 nām 2000.

